{"title":"曲线上线束根的对数模","authors":"David Holmes , Giulio Orecchia","doi":"10.1016/j.exmath.2023.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>We use the theory of logarithmic line bundles to construct compactifications of spaces of roots of a line bundle on a family of curves, generalising work of a number of authors. This runs via a study of the torsion in the tropical and logarithmic jacobians (recently constructed by Molcho and Wise). Our moduli space carries a ‘double ramification cycle’ measuring the locus where the given root is isomorphic to the trivial bundle, and we give a tautological formula for this class in the language of piecewise polynomial functions (as recently developed by Molcho–Pandharipande–Schmitt and Holmes–Schwarz).</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Logarithmic moduli of roots of line bundles on curves\",\"authors\":\"David Holmes , Giulio Orecchia\",\"doi\":\"10.1016/j.exmath.2023.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We use the theory of logarithmic line bundles to construct compactifications of spaces of roots of a line bundle on a family of curves, generalising work of a number of authors. This runs via a study of the torsion in the tropical and logarithmic jacobians (recently constructed by Molcho and Wise). Our moduli space carries a ‘double ramification cycle’ measuring the locus where the given root is isomorphic to the trivial bundle, and we give a tautological formula for this class in the language of piecewise polynomial functions (as recently developed by Molcho–Pandharipande–Schmitt and Holmes–Schwarz).</p></div>\",\"PeriodicalId\":50458,\"journal\":{\"name\":\"Expositiones Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expositiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723086923000373\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086923000373","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Logarithmic moduli of roots of line bundles on curves
We use the theory of logarithmic line bundles to construct compactifications of spaces of roots of a line bundle on a family of curves, generalising work of a number of authors. This runs via a study of the torsion in the tropical and logarithmic jacobians (recently constructed by Molcho and Wise). Our moduli space carries a ‘double ramification cycle’ measuring the locus where the given root is isomorphic to the trivial bundle, and we give a tautological formula for this class in the language of piecewise polynomial functions (as recently developed by Molcho–Pandharipande–Schmitt and Holmes–Schwarz).
期刊介绍:
Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.