{"title":"(1+1)-仿射过程的强费勒和遍历性质","authors":"Shukai Chen, Zenghu Li","doi":"10.1017/jpr.2022.100","DOIUrl":null,"url":null,"abstract":"Abstract We prove some estimates for the variations of transition probabilities of the (1+1)-affine process. From these estimates we deduce the strong Feller and the ergodic properties of the total variation distance of the process. The key strategy is the pathwise construction and analysis of several Markov couplings using strong solutions of stochastic equations.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"60 1","pages":"812 - 834"},"PeriodicalIF":0.7000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Strong feller and ergodic properties of the (1+1)-affine process\",\"authors\":\"Shukai Chen, Zenghu Li\",\"doi\":\"10.1017/jpr.2022.100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove some estimates for the variations of transition probabilities of the (1+1)-affine process. From these estimates we deduce the strong Feller and the ergodic properties of the total variation distance of the process. The key strategy is the pathwise construction and analysis of several Markov couplings using strong solutions of stochastic equations.\",\"PeriodicalId\":50256,\"journal\":{\"name\":\"Journal of Applied Probability\",\"volume\":\"60 1\",\"pages\":\"812 - 834\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/jpr.2022.100\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2022.100","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Strong feller and ergodic properties of the (1+1)-affine process
Abstract We prove some estimates for the variations of transition probabilities of the (1+1)-affine process. From these estimates we deduce the strong Feller and the ergodic properties of the total variation distance of the process. The key strategy is the pathwise construction and analysis of several Markov couplings using strong solutions of stochastic equations.
期刊介绍:
Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.