韦伯电动力学中的非齐次波动方程、李势和赫兹偶极子

IF 0.6 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
S. Kühn
{"title":"韦伯电动力学中的非齐次波动方程、李势和赫兹偶极子","authors":"S. Kühn","doi":"10.1080/02726343.2022.2161709","DOIUrl":null,"url":null,"abstract":"ABSTRACT Aiming to bypass the Lorentz force, this study analyzes Maxwell’s equations from the perspective of a receiver at rest. This approach is necessary because experimental results suggest that the general validity of the Lorentz force might be questionable in non-stationary cases. Calculations in the receiver’s rest frame are complicated and, thus, are rarely performed. In particular, the most important case is missing: namely, the solution of a Hertzian dipole moving in the rest frame of the receiver. The present article addresses this knowledge gap. First, this work demonstrates how the inhomogeneous wave equation can be derived and generically solved in the rest frame of the receiver. Subsequently, the solution for two uniformly moving point charges is derived, and the close connection between Maxwell’s equations and Weber electrodynamics is highlighted. The gained insights are then applied to compute the far-field solution of a moving Hertzian dipole in the receiver’s rest frame. The resulting solution is analyzed, and an explanation is presented regarding why an invariant and symmetric wave equation is possible for Weber electrodynamics and why the invariance could be the consequence of a quantum effect.","PeriodicalId":50542,"journal":{"name":"Electromagnetics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Inhomogeneous wave equation, Liénard-Wiechert potentials, and Hertzian dipoles in Weber electrodynamics\",\"authors\":\"S. Kühn\",\"doi\":\"10.1080/02726343.2022.2161709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Aiming to bypass the Lorentz force, this study analyzes Maxwell’s equations from the perspective of a receiver at rest. This approach is necessary because experimental results suggest that the general validity of the Lorentz force might be questionable in non-stationary cases. Calculations in the receiver’s rest frame are complicated and, thus, are rarely performed. In particular, the most important case is missing: namely, the solution of a Hertzian dipole moving in the rest frame of the receiver. The present article addresses this knowledge gap. First, this work demonstrates how the inhomogeneous wave equation can be derived and generically solved in the rest frame of the receiver. Subsequently, the solution for two uniformly moving point charges is derived, and the close connection between Maxwell’s equations and Weber electrodynamics is highlighted. The gained insights are then applied to compute the far-field solution of a moving Hertzian dipole in the receiver’s rest frame. The resulting solution is analyzed, and an explanation is presented regarding why an invariant and symmetric wave equation is possible for Weber electrodynamics and why the invariance could be the consequence of a quantum effect.\",\"PeriodicalId\":50542,\"journal\":{\"name\":\"Electromagnetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromagnetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/02726343.2022.2161709\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/02726343.2022.2161709","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

摘要

摘要为了绕过洛伦兹力,本研究从静止接收器的角度分析了麦克斯韦方程组。这种方法是必要的,因为实验结果表明,洛伦兹力在非平稳情况下的一般有效性可能存在疑问。接收器的静止帧中的计算是复杂的,因此很少执行。特别是,缺少了最重要的情况:即赫兹偶极子在接收器的静止帧中移动的解。本文解决了这一知识差距。首先,这项工作演示了如何在接收器的静止帧中推导和一般求解非均匀波动方程。随后,导出了两个均匀移动点电荷的解,并强调了麦克斯韦方程组与韦伯电动力学之间的密切联系。然后,将获得的见解应用于计算接收器静止框架中移动赫兹偶极子的远场解。分析了所得的解,并解释了为什么韦伯电动力学可以得到不变的对称波动方程,以及为什么不变性可能是量子效应的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inhomogeneous wave equation, Liénard-Wiechert potentials, and Hertzian dipoles in Weber electrodynamics
ABSTRACT Aiming to bypass the Lorentz force, this study analyzes Maxwell’s equations from the perspective of a receiver at rest. This approach is necessary because experimental results suggest that the general validity of the Lorentz force might be questionable in non-stationary cases. Calculations in the receiver’s rest frame are complicated and, thus, are rarely performed. In particular, the most important case is missing: namely, the solution of a Hertzian dipole moving in the rest frame of the receiver. The present article addresses this knowledge gap. First, this work demonstrates how the inhomogeneous wave equation can be derived and generically solved in the rest frame of the receiver. Subsequently, the solution for two uniformly moving point charges is derived, and the close connection between Maxwell’s equations and Weber electrodynamics is highlighted. The gained insights are then applied to compute the far-field solution of a moving Hertzian dipole in the receiver’s rest frame. The resulting solution is analyzed, and an explanation is presented regarding why an invariant and symmetric wave equation is possible for Weber electrodynamics and why the invariance could be the consequence of a quantum effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electromagnetics
Electromagnetics 工程技术-工程:电子与电气
CiteScore
1.60
自引率
12.50%
发文量
31
审稿时长
6 months
期刊介绍: Publishing eight times per year, Electromagnetics offers refereed papers that span the entire broad field of electromagnetics and serves as an exceptional reference source of permanent archival value. Included in this wide ranging scope of materials are developments in electromagnetic theory, high frequency techniques, antennas and randomes, arrays, numerical techniques, scattering and diffraction, materials, and printed circuits. The journal also serves as a forum for deliberations on innovations in the field. Additionally, special issues give more in-depth coverage to topics of immediate importance. All submitted manuscripts are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. Submissions can be made via email or postal mail.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信