基于分解的多目标模拟退火性能分析

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
M. Vargas-Martínez, Nelson Rangel-Valdez, E. Fernández, Claudia Gómez-Santillán, M. L. Morales-Rodríguez
{"title":"基于分解的多目标模拟退火性能分析","authors":"M. Vargas-Martínez, Nelson Rangel-Valdez, E. Fernández, Claudia Gómez-Santillán, M. L. Morales-Rodríguez","doi":"10.3390/mca28020038","DOIUrl":null,"url":null,"abstract":"Simulated annealing is a metaheuristic that balances exploration and exploitation to solve global optimization problems. However, to deal with multi- and many-objective optimization problems, this balance needs to be improved due to diverse factors such as the number of objectives. To deal with this issue, this work proposes MOSA/D, a hybrid framework for multi-objective simulated annealing based on decomposition and evolutionary perturbation functions. According to the literature, the decomposition strategy allows diversity in a population while evolutionary perturbations add convergence toward the Pareto front; however, a question should be asked: What is the effect of such components when included as part of a multi-objective simulated annealing design? Hence, this work studies the performance of the MOSA/D framework considering in its implementation two widely used perturbation operators: classical genetic operators and differential evolution. The proposed algorithms are MOSA/D-CGO, based on classical genetic operators, and MOSA/D-DE, based on differential evolution operators. The main contribution of this work is the performance analysis of MOSA/D using both perturbation operators and identifying the one most suitable for the framework. The approaches were tested using DTLZ on two and three objectives and CEC2009 benchmarks on two, three, five, and ten objectives; the performance analysis considered diversity and convergence measured through the hypervolume (HV) and inverted generational distance (IGD) indicators. The results pointed out that there is a promising improvement in performance in favor of MOSA/D-DE.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Analysis of Multi-Objective Simulated Annealing Based on Decomposition\",\"authors\":\"M. Vargas-Martínez, Nelson Rangel-Valdez, E. Fernández, Claudia Gómez-Santillán, M. L. Morales-Rodríguez\",\"doi\":\"10.3390/mca28020038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulated annealing is a metaheuristic that balances exploration and exploitation to solve global optimization problems. However, to deal with multi- and many-objective optimization problems, this balance needs to be improved due to diverse factors such as the number of objectives. To deal with this issue, this work proposes MOSA/D, a hybrid framework for multi-objective simulated annealing based on decomposition and evolutionary perturbation functions. According to the literature, the decomposition strategy allows diversity in a population while evolutionary perturbations add convergence toward the Pareto front; however, a question should be asked: What is the effect of such components when included as part of a multi-objective simulated annealing design? Hence, this work studies the performance of the MOSA/D framework considering in its implementation two widely used perturbation operators: classical genetic operators and differential evolution. The proposed algorithms are MOSA/D-CGO, based on classical genetic operators, and MOSA/D-DE, based on differential evolution operators. The main contribution of this work is the performance analysis of MOSA/D using both perturbation operators and identifying the one most suitable for the framework. The approaches were tested using DTLZ on two and three objectives and CEC2009 benchmarks on two, three, five, and ten objectives; the performance analysis considered diversity and convergence measured through the hypervolume (HV) and inverted generational distance (IGD) indicators. The results pointed out that there is a promising improvement in performance in favor of MOSA/D-DE.\",\"PeriodicalId\":53224,\"journal\":{\"name\":\"Mathematical & Computational Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical & Computational Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mca28020038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28020038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

模拟退火是一种元启发式算法,它平衡了探索和开发,以解决全局优化问题。然而,为了处理多目标和多目标的优化问题,由于目标数量等多种因素,需要改善这种平衡。为了解决这个问题,本文提出了一种基于分解和进化扰动函数的多目标模拟退火混合框架MOSA/D。根据文献,分解策略允许种群的多样性,而进化扰动增加了帕累托前沿的收敛性;然而,应该问一个问题:当这些组件作为多目标模拟退火设计的一部分时,会产生什么影响?因此,本工作研究了MOSA/D框架的性能,在其实现中考虑了两个广泛使用的扰动算子:经典遗传算子和差分进化。所提出的算法是基于经典遗传算子的MOSA/D-CGO和基于差分进化算子的MOSA/D-D-DE。这项工作的主要贡献是使用扰动算子对MOSA/D进行性能分析,并确定最适合该框架的算子。使用DTLZ在两个和三个目标上测试了这些方法,并使用CEC2009基准在两个、三个、五个和十个目标上进行了测试;性能分析考虑了通过超容量(HV)和反向世代距离(IGD)指标测量的多样性和收敛性。结果表明,MOSA/D-DE在性能上有很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Multi-Objective Simulated Annealing Based on Decomposition
Simulated annealing is a metaheuristic that balances exploration and exploitation to solve global optimization problems. However, to deal with multi- and many-objective optimization problems, this balance needs to be improved due to diverse factors such as the number of objectives. To deal with this issue, this work proposes MOSA/D, a hybrid framework for multi-objective simulated annealing based on decomposition and evolutionary perturbation functions. According to the literature, the decomposition strategy allows diversity in a population while evolutionary perturbations add convergence toward the Pareto front; however, a question should be asked: What is the effect of such components when included as part of a multi-objective simulated annealing design? Hence, this work studies the performance of the MOSA/D framework considering in its implementation two widely used perturbation operators: classical genetic operators and differential evolution. The proposed algorithms are MOSA/D-CGO, based on classical genetic operators, and MOSA/D-DE, based on differential evolution operators. The main contribution of this work is the performance analysis of MOSA/D using both perturbation operators and identifying the one most suitable for the framework. The approaches were tested using DTLZ on two and three objectives and CEC2009 benchmarks on two, three, five, and ten objectives; the performance analysis considered diversity and convergence measured through the hypervolume (HV) and inverted generational distance (IGD) indicators. The results pointed out that there is a promising improvement in performance in favor of MOSA/D-DE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical & Computational Applications
Mathematical & Computational Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
10.50%
发文量
86
审稿时长
12 weeks
期刊介绍: Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信