正交辛Satake等价

IF 1.2 3区 数学 Q1 MATHEMATICS
A. Braverman, M. Finkelberg, Roman Travkin
{"title":"正交辛Satake等价","authors":"A. Braverman, M. Finkelberg, Roman Travkin","doi":"10.4310/CNTP.2022.v16.n4.a2","DOIUrl":null,"url":null,"abstract":"This is a companion paper of arXiv:1909.11492. We prove an equivalence relating representations of a degenerate orthosymplectic supergroup with the category of $SO(N-1,{\\mathbb C}[\\![t]\\!])$-equivariant perverse sheaves on the affine Grassmannian of $SO_N$. We explain how this equivalence fits into a more general framework of conjectures due to Gaiotto and to Ben-Zvi, Sakellaridis and Venkatesh.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Orthosymplectic Satake equivalence\",\"authors\":\"A. Braverman, M. Finkelberg, Roman Travkin\",\"doi\":\"10.4310/CNTP.2022.v16.n4.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a companion paper of arXiv:1909.11492. We prove an equivalence relating representations of a degenerate orthosymplectic supergroup with the category of $SO(N-1,{\\\\mathbb C}[\\\\![t]\\\\!])$-equivariant perverse sheaves on the affine Grassmannian of $SO_N$. We explain how this equivalence fits into a more general framework of conjectures due to Gaiotto and to Ben-Zvi, Sakellaridis and Venkatesh.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CNTP.2022.v16.n4.a2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2022.v16.n4.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

这是arXiv的一篇配套论文:1909.11492。我们证明了在$SO_N$的仿射Grassmann上具有$SO(N-1,{\mathbb C}[\![t]\!])范畴的退化正辛超群的等价表示。我们解释了由于Gaiotto和Ben Zvi、Sakellaridis和Venkatesh的原因,这种等价性如何适应更普遍的猜想框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthosymplectic Satake equivalence
This is a companion paper of arXiv:1909.11492. We prove an equivalence relating representations of a degenerate orthosymplectic supergroup with the category of $SO(N-1,{\mathbb C}[\![t]\!])$-equivariant perverse sheaves on the affine Grassmannian of $SO_N$. We explain how this equivalence fits into a more general framework of conjectures due to Gaiotto and to Ben-Zvi, Sakellaridis and Venkatesh.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信