交替群中完全环共轭类的乘积

IF 1 Q1 MATHEMATICS
Omar Tout
{"title":"交替群中完全环共轭类的乘积","authors":"Omar Tout","doi":"10.47443/dml.2022.018","DOIUrl":null,"url":null,"abstract":"The product of conjugacy classes of a finite group can be written as a linear combination of conjugacy classes with integer coefficients. For the symmetric group, some explicit expressions for these coefficients are known only in particular cases. The aim of this paper is to give explicit expressions for the product of the conjugacy classes in the alternating group A n corresponding to cycles of length n .","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Product of conjugacy classes of complete cycles in the alternating group\",\"authors\":\"Omar Tout\",\"doi\":\"10.47443/dml.2022.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The product of conjugacy classes of a finite group can be written as a linear combination of conjugacy classes with integer coefficients. For the symmetric group, some explicit expressions for these coefficients are known only in particular cases. The aim of this paper is to give explicit expressions for the product of the conjugacy classes in the alternating group A n corresponding to cycles of length n .\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2022.018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

有限群的共轭类的乘积可以写成共轭类与整数系数的线性组合。对于对称群,这些系数的一些显式表达式只有在特定情况下才是已知的。本文的目的是给出交替群An中与长度为n的循环对应的共轭类的乘积的显式表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Product of conjugacy classes of complete cycles in the alternating group
The product of conjugacy classes of a finite group can be written as a linear combination of conjugacy classes with integer coefficients. For the symmetric group, some explicit expressions for these coefficients are known only in particular cases. The aim of this paper is to give explicit expressions for the product of the conjugacy classes in the alternating group A n corresponding to cycles of length n .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信