A. Hamed
求助PDF
{"title":"形式幂级数的GCD域的新表征","authors":"A. Hamed","doi":"10.1090/spmj/1731","DOIUrl":null,"url":null,"abstract":"<p>By using the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"v\">\n <mml:semantics>\n <mml:mi>v</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">v</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-operation, a new characterization of the property for a power series ring to be a GCD domain is discussed. It is shown that if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\">\n <mml:semantics>\n <mml:mi>D</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">D</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U upper F upper D\">\n <mml:semantics>\n <mml:mi>UFD</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {UFD}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, then <inline-formula content-type=\"math/tex\">\n<tex-math>\nD\\lBrack X\\rBrack </tex-math></inline-formula> is a GCD domain if and only if for any two integral <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"v\">\n <mml:semantics>\n <mml:mi>v</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">v</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-invertible <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"v\">\n <mml:semantics>\n <mml:mi>v</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">v</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-ideals <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\">\n <mml:semantics>\n <mml:mi>I</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">I</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper J\">\n <mml:semantics>\n <mml:mi>J</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">J</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/tex\">\n<tex-math>\nD\\lBrack X\\rBrack </tex-math></inline-formula> such that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper I upper J right-parenthesis Subscript 0 Baseline not-equals left-parenthesis 0 right-parenthesis comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>I</mml:mi>\n <mml:mi>J</mml:mi>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>0</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo>≠<!-- ≠ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(IJ)_{0}\\neq (0),</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> we have <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis left-parenthesis upper I upper J right-parenthesis Subscript 0 Baseline right-parenthesis Subscript v\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>I</mml:mi>\n <mml:mi>J</mml:mi>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>0</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>v</mml:mi>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">((IJ)_{0})_{v}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"equals left-parenthesis left-parenthesis upper I upper J right-parenthesis Subscript v Baseline right-parenthesis Subscript 0 Baseline comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo>=</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>I</mml:mi>\n <mml:mi>J</mml:mi>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>v</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>0</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">= ((IJ)_{v})_{0},</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I 0 equals left-brace f left-parenthesis 0 right-parenthesis bar f element-of upper I right-brace\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>I</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo>=</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>∣<!-- ∣ --></mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi>I</mml:mi>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">I_0=\\{f(0) \\mid f\\in I\\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This shows that if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\">\n <mml:semantics>\n <mml:mi>D</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">D</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a GCD domain such that <inline-formula content-type=\"math/tex\">\n<tex-math>\nD\\lBrack X\\rBrack </tex-math></inline-formula> is a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi\">\n <mml:semantics>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\pi</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-domain, then <inline-formula content-type=\"math/tex\">\n<tex-math>\nD\\lBrack X\\rBrack </tex-math></inline-formula> is a GCD domain.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new characterization of GCD domains of formal power series\",\"authors\":\"A. Hamed\",\"doi\":\"10.1090/spmj/1731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By using the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"v\\\">\\n <mml:semantics>\\n <mml:mi>v</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">v</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-operation, a new characterization of the property for a power series ring to be a GCD domain is discussed. It is shown that if <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper D\\\">\\n <mml:semantics>\\n <mml:mi>D</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">D</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper U upper F upper D\\\">\\n <mml:semantics>\\n <mml:mi>UFD</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\operatorname {UFD}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, then <inline-formula content-type=\\\"math/tex\\\">\\n<tex-math>\\nD\\\\lBrack X\\\\rBrack </tex-math></inline-formula> is a GCD domain if and only if for any two integral <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"v\\\">\\n <mml:semantics>\\n <mml:mi>v</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">v</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-invertible <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"v\\\">\\n <mml:semantics>\\n <mml:mi>v</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">v</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-ideals <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper I\\\">\\n <mml:semantics>\\n <mml:mi>I</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">I</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper J\\\">\\n <mml:semantics>\\n <mml:mi>J</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">J</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of <inline-formula content-type=\\\"math/tex\\\">\\n<tex-math>\\nD\\\\lBrack X\\\\rBrack </tex-math></inline-formula> such that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper I upper J right-parenthesis Subscript 0 Baseline not-equals left-parenthesis 0 right-parenthesis comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>I</mml:mi>\\n <mml:mi>J</mml:mi>\\n <mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>≠<!-- ≠ --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(IJ)_{0}\\\\neq (0),</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> we have <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis left-parenthesis upper I upper J right-parenthesis Subscript 0 Baseline right-parenthesis Subscript v\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>I</mml:mi>\\n <mml:mi>J</mml:mi>\\n <mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n <mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>v</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">((IJ)_{0})_{v}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"equals left-parenthesis left-parenthesis upper I upper J right-parenthesis Subscript v Baseline right-parenthesis Subscript 0 Baseline comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo>=</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>I</mml:mi>\\n <mml:mi>J</mml:mi>\\n <mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>v</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">= ((IJ)_{v})_{0},</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper I 0 equals left-brace f left-parenthesis 0 right-parenthesis bar f element-of upper I right-brace\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>I</mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:mo>=</mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo>\\n <mml:mi>f</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>∣<!-- ∣ --></mml:mo>\\n <mml:mi>f</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mi>I</mml:mi>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">I_0=\\\\{f(0) \\\\mid f\\\\in I\\\\}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. This shows that if <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper D\\\">\\n <mml:semantics>\\n <mml:mi>D</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">D</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a GCD domain such that <inline-formula content-type=\\\"math/tex\\\">\\n<tex-math>\\nD\\\\lBrack X\\\\rBrack </tex-math></inline-formula> is a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"pi\\\">\\n <mml:semantics>\\n <mml:mi>π<!-- π --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\pi</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-domain, then <inline-formula content-type=\\\"math/tex\\\">\\n<tex-math>\\nD\\\\lBrack X\\\\rBrack </tex-math></inline-formula> is a GCD domain.</p>\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1731\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1731","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用