不规则场景文本识别的多粒度深度局部表示

Hongchao Gao, Yujia Li, Jiao Dai, Xi Wang, Jizhong Han, Ruixuan Li
{"title":"不规则场景文本识别的多粒度深度局部表示","authors":"Hongchao Gao, Yujia Li, Jiao Dai, Xi Wang, Jizhong Han, Ruixuan Li","doi":"10.1145/3446971","DOIUrl":null,"url":null,"abstract":"Recognizing irregular text from natural scene images is challenging due to the unconstrained appearance of text, such as curvature, orientation, and distortion. Recent recognition networks regard this task as a text sequence labeling problem and most networks capture the sequence only from a single-granularity visual representation, which to some extent limits the performance of recognition. In this article, we propose a hierarchical attention network to capture multi-granularity deep local representations for recognizing irregular scene text. It consists of several hierarchical attention blocks, and each block contains a Local Visual Representation Module (LVRM) and a Decoder Module (DM). Based on the hierarchical attention network, we propose a scene text recognition network. The extensive experiments show that our proposed network achieves the state-of-the-art performance on several benchmark datasets including IIIT-5K, SVT, CUTE, SVT-Perspective, and ICDAR datasets under shorter training time.","PeriodicalId":93404,"journal":{"name":"ACM/IMS transactions on data science","volume":"2 1","pages":"1 - 18"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3446971","citationCount":"1","resultStr":"{\"title\":\"Multi-granularity Deep Local Representations for Irregular Scene Text Recognition\",\"authors\":\"Hongchao Gao, Yujia Li, Jiao Dai, Xi Wang, Jizhong Han, Ruixuan Li\",\"doi\":\"10.1145/3446971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognizing irregular text from natural scene images is challenging due to the unconstrained appearance of text, such as curvature, orientation, and distortion. Recent recognition networks regard this task as a text sequence labeling problem and most networks capture the sequence only from a single-granularity visual representation, which to some extent limits the performance of recognition. In this article, we propose a hierarchical attention network to capture multi-granularity deep local representations for recognizing irregular scene text. It consists of several hierarchical attention blocks, and each block contains a Local Visual Representation Module (LVRM) and a Decoder Module (DM). Based on the hierarchical attention network, we propose a scene text recognition network. The extensive experiments show that our proposed network achieves the state-of-the-art performance on several benchmark datasets including IIIT-5K, SVT, CUTE, SVT-Perspective, and ICDAR datasets under shorter training time.\",\"PeriodicalId\":93404,\"journal\":{\"name\":\"ACM/IMS transactions on data science\",\"volume\":\"2 1\",\"pages\":\"1 - 18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3446971\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IMS transactions on data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3446971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IMS transactions on data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从自然场景图像中识别不规则文本具有挑战性,因为文本的外观不受约束,如弯曲、方向和扭曲。最近的识别网络将此任务视为文本序列标记问题,大多数网络仅从单一粒度的视觉表示中捕获序列,这在一定程度上限制了识别的性能。在本文中,我们提出了一种分层注意力网络来捕获多粒度的深层局部表示,用于识别不规则的场景文本。它由几个层次化的注意力块组成,每个块包含一个局部视觉表示模块(LVRM)和一个解码器模块(DM)。基于层次注意力网络,我们提出了一种场景文本识别网络。大量实验表明,在较短的训练时间下,我们提出的网络在几个基准数据集上实现了最先进的性能,包括IIIT-5K、SVT、CUTE、SVT Perspective和ICDAR数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-granularity Deep Local Representations for Irregular Scene Text Recognition
Recognizing irregular text from natural scene images is challenging due to the unconstrained appearance of text, such as curvature, orientation, and distortion. Recent recognition networks regard this task as a text sequence labeling problem and most networks capture the sequence only from a single-granularity visual representation, which to some extent limits the performance of recognition. In this article, we propose a hierarchical attention network to capture multi-granularity deep local representations for recognizing irregular scene text. It consists of several hierarchical attention blocks, and each block contains a Local Visual Representation Module (LVRM) and a Decoder Module (DM). Based on the hierarchical attention network, we propose a scene text recognition network. The extensive experiments show that our proposed network achieves the state-of-the-art performance on several benchmark datasets including IIIT-5K, SVT, CUTE, SVT-Perspective, and ICDAR datasets under shorter training time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信