干旱胁迫和根系发育条件下玉米Zmdreb2a mRNA转录本的差异及发育阶段特异性丰度

Q3 Agricultural and Biological Sciences
Rakesh Sharma, M. Azad, V. Nunia, S. Kothari, S. Kachhwaha
{"title":"干旱胁迫和根系发育条件下玉米Zmdreb2a mRNA转录本的差异及发育阶段特异性丰度","authors":"Rakesh Sharma, M. Azad, V. Nunia, S. Kothari, S. Kachhwaha","doi":"10.21475/poj.12.02.19.p1763","DOIUrl":null,"url":null,"abstract":"Environmental stress constraints like temperature, drought and salinity affect plant growth, development and productivity negatively. In maize (Zea mays L.) water-deficiency affects flowering, pollination and embryo development. Transgenic plants having drought tolerance is a priority target in maize breeding programs worldwide. Various transcription factors play a key role in plant development and stress management. DRE-Binding Protein 2A (DREB2A) has been shown to play a central role in drought tolerance in Arabidopsis thaliana. The homologue of dreb2a in Zea mays is Zmdreb2a, a well-known transcription factor regulating genes induced under stress conditions. Studies indicated that Zmdreb2a transgenic plants show not only stress tolerance but also growth retardation. It is a major targeted gene for transgenesis to produce drought-tolerant plants. However, to make construct for transgenic plants, there is need to consider functional transcripts and regulating mechanism of Zmdreb2a mRNAs under drought condition. We have analyzed publicly available RNASeq data of leaf meristem, ovary and developing root and used a host of FastQC, Tophat, Cufflinks, Cuffmerge, Cuffdiff and ‘R’ packages to functionally characterize the differentially expressed genes (DEGs). In addition, prediction of protein structure, nuclear localization signals and transactivation domain were performed using cNLS mapper and 9aaTAD prediction tools. Alternative splicing of Zmdreb2a pre-mRNA was shown to be strongly associated with developmental stage and isoforms show fluctuating expression under stress. This study provides putative functional transcripts of Zmdreb2a, and NMD as a regulating mechanism to control their abundance.","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential and developmental stage specific abundance of Zmdreb2a mRNA transcripts under drought stress and root development in Zea mays (L.)\",\"authors\":\"Rakesh Sharma, M. Azad, V. Nunia, S. Kothari, S. Kachhwaha\",\"doi\":\"10.21475/poj.12.02.19.p1763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental stress constraints like temperature, drought and salinity affect plant growth, development and productivity negatively. In maize (Zea mays L.) water-deficiency affects flowering, pollination and embryo development. Transgenic plants having drought tolerance is a priority target in maize breeding programs worldwide. Various transcription factors play a key role in plant development and stress management. DRE-Binding Protein 2A (DREB2A) has been shown to play a central role in drought tolerance in Arabidopsis thaliana. The homologue of dreb2a in Zea mays is Zmdreb2a, a well-known transcription factor regulating genes induced under stress conditions. Studies indicated that Zmdreb2a transgenic plants show not only stress tolerance but also growth retardation. It is a major targeted gene for transgenesis to produce drought-tolerant plants. However, to make construct for transgenic plants, there is need to consider functional transcripts and regulating mechanism of Zmdreb2a mRNAs under drought condition. We have analyzed publicly available RNASeq data of leaf meristem, ovary and developing root and used a host of FastQC, Tophat, Cufflinks, Cuffmerge, Cuffdiff and ‘R’ packages to functionally characterize the differentially expressed genes (DEGs). In addition, prediction of protein structure, nuclear localization signals and transactivation domain were performed using cNLS mapper and 9aaTAD prediction tools. Alternative splicing of Zmdreb2a pre-mRNA was shown to be strongly associated with developmental stage and isoforms show fluctuating expression under stress. This study provides putative functional transcripts of Zmdreb2a, and NMD as a regulating mechanism to control their abundance.\",\"PeriodicalId\":54602,\"journal\":{\"name\":\"Plant Omics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Omics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21475/poj.12.02.19.p1763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Omics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21475/poj.12.02.19.p1763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

温度、干旱和盐度等环境胁迫对植物的生长、发育和生产力产生负面影响。玉米缺水影响开花、授粉和胚胎发育。具有耐旱性的转基因植物是全球玉米育种计划的优先目标。各种转录因子在植物发育和胁迫管理中起着关键作用。DRE结合蛋白2A(DREB2A)已被证明在拟南芥的耐旱性中起着核心作用。玉米中dreb2a的同源物是Zmdreb2a,这是一种众所周知的在胁迫条件下诱导的转录因子调控基因。研究表明,Zmdreb2a转基因植株不仅表现出抗逆性,而且表现出生长迟缓。它是转基因生产耐旱植物的主要靶向基因。然而,为了构建转基因植物,需要考虑干旱条件下Zmdreb2a mRNA的功能转录物和调控机制。我们分析了叶分生组织、卵巢和发育根的公开RNASeq数据,并使用了大量FastQC、Tophat、Cufflinks、Cuffmerge、Cuff diff和“R”包来对差异表达基因(DEG)进行功能表征。此外,使用cNLS mapper和9aaTAD预测工具对蛋白质结构、核定位信号和反式激活结构域进行了预测。Zmdreb2a-pre-mRNA的选择性剪接与发育阶段密切相关,并且同种型在应激下表现出波动性表达。本研究提供了Zmdreb2a的假定功能转录物,并将NMD作为控制其丰度的调节机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential and developmental stage specific abundance of Zmdreb2a mRNA transcripts under drought stress and root development in Zea mays (L.)
Environmental stress constraints like temperature, drought and salinity affect plant growth, development and productivity negatively. In maize (Zea mays L.) water-deficiency affects flowering, pollination and embryo development. Transgenic plants having drought tolerance is a priority target in maize breeding programs worldwide. Various transcription factors play a key role in plant development and stress management. DRE-Binding Protein 2A (DREB2A) has been shown to play a central role in drought tolerance in Arabidopsis thaliana. The homologue of dreb2a in Zea mays is Zmdreb2a, a well-known transcription factor regulating genes induced under stress conditions. Studies indicated that Zmdreb2a transgenic plants show not only stress tolerance but also growth retardation. It is a major targeted gene for transgenesis to produce drought-tolerant plants. However, to make construct for transgenic plants, there is need to consider functional transcripts and regulating mechanism of Zmdreb2a mRNAs under drought condition. We have analyzed publicly available RNASeq data of leaf meristem, ovary and developing root and used a host of FastQC, Tophat, Cufflinks, Cuffmerge, Cuffdiff and ‘R’ packages to functionally characterize the differentially expressed genes (DEGs). In addition, prediction of protein structure, nuclear localization signals and transactivation domain were performed using cNLS mapper and 9aaTAD prediction tools. Alternative splicing of Zmdreb2a pre-mRNA was shown to be strongly associated with developmental stage and isoforms show fluctuating expression under stress. This study provides putative functional transcripts of Zmdreb2a, and NMD as a regulating mechanism to control their abundance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Omics
Plant Omics 生物-植物科学
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: Plant OMICS is an international, peer-reviewed publication that gathers and disseminates fundamental and applied knowledge in almost all area of molecular plant and animal biology, particularly OMICS-es including: Coverage extends to the most corners of plant and animal biology, including molecular biology, genetics, functional and non-functional molecular breeding and physiology, developmental biology, and new technologies such as vaccines. This journal also covers the combination of many areas of molecular plant and animal biology. Plant Omics is also exteremely interested in molecular aspects of stress biology in plants and animals, including molecular physiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信