{"title":"粗分辨率散射计数据降尺度的信息融合方法","authors":"A. Maurya, A. Kukunuri, D. Singh","doi":"10.1080/19479832.2022.2144955","DOIUrl":null,"url":null,"abstract":"ABSTRACT The applications of scatterometer data (σ°) are limited due to their coarser resolution (25–50 km). Some image reconstruction techniques are available to generate high-resolution products, but they require various sensor parameters and multiset observation, making them complex to use. Therefore, this paper proposes an information fusion approach to disaggregate the coarse resolution σ° product. The coarse resolution backscattering signal includes the contribution from more than one land cover class, such as short vegetation, soil, urban and tall vegetation, the information of which can be obtained from normalised difference vegetation index (NDVI), vegetation temperature condition index (VTCI), and fraction cover of urban and forests, respectively. Disaggregating this coarse resolution pixel, an optimum weight information is required that provides the distribution of each class. Since the distribution of land cover classes is not homogeneous for every pixel, a variance-based fusion approach has been used to obtain the optimum weight factors to fuse NDVI, VTCI, and fraction cover. These weight factors are used to disaggregate every coarse-resolution pixel into high-resolution pixels. The developed model is applied to Sentinel-1 and Scatsat-1 level-3 products, and the obtained results are quite satisfactory.","PeriodicalId":46012,"journal":{"name":"International Journal of Image and Data Fusion","volume":"14 1","pages":"89 - 106"},"PeriodicalIF":1.8000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Information fusion approach for downscaling coarse resolution scatterometer data\",\"authors\":\"A. Maurya, A. Kukunuri, D. Singh\",\"doi\":\"10.1080/19479832.2022.2144955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The applications of scatterometer data (σ°) are limited due to their coarser resolution (25–50 km). Some image reconstruction techniques are available to generate high-resolution products, but they require various sensor parameters and multiset observation, making them complex to use. Therefore, this paper proposes an information fusion approach to disaggregate the coarse resolution σ° product. The coarse resolution backscattering signal includes the contribution from more than one land cover class, such as short vegetation, soil, urban and tall vegetation, the information of which can be obtained from normalised difference vegetation index (NDVI), vegetation temperature condition index (VTCI), and fraction cover of urban and forests, respectively. Disaggregating this coarse resolution pixel, an optimum weight information is required that provides the distribution of each class. Since the distribution of land cover classes is not homogeneous for every pixel, a variance-based fusion approach has been used to obtain the optimum weight factors to fuse NDVI, VTCI, and fraction cover. These weight factors are used to disaggregate every coarse-resolution pixel into high-resolution pixels. The developed model is applied to Sentinel-1 and Scatsat-1 level-3 products, and the obtained results are quite satisfactory.\",\"PeriodicalId\":46012,\"journal\":{\"name\":\"International Journal of Image and Data Fusion\",\"volume\":\"14 1\",\"pages\":\"89 - 106\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Data Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19479832.2022.2144955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Data Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19479832.2022.2144955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Information fusion approach for downscaling coarse resolution scatterometer data
ABSTRACT The applications of scatterometer data (σ°) are limited due to their coarser resolution (25–50 km). Some image reconstruction techniques are available to generate high-resolution products, but they require various sensor parameters and multiset observation, making them complex to use. Therefore, this paper proposes an information fusion approach to disaggregate the coarse resolution σ° product. The coarse resolution backscattering signal includes the contribution from more than one land cover class, such as short vegetation, soil, urban and tall vegetation, the information of which can be obtained from normalised difference vegetation index (NDVI), vegetation temperature condition index (VTCI), and fraction cover of urban and forests, respectively. Disaggregating this coarse resolution pixel, an optimum weight information is required that provides the distribution of each class. Since the distribution of land cover classes is not homogeneous for every pixel, a variance-based fusion approach has been used to obtain the optimum weight factors to fuse NDVI, VTCI, and fraction cover. These weight factors are used to disaggregate every coarse-resolution pixel into high-resolution pixels. The developed model is applied to Sentinel-1 and Scatsat-1 level-3 products, and the obtained results are quite satisfactory.
期刊介绍:
International Journal of Image and Data Fusion provides a single source of information for all aspects of image and data fusion methodologies, developments, techniques and applications. Image and data fusion techniques are important for combining the many sources of satellite, airborne and ground based imaging systems, and integrating these with other related data sets for enhanced information extraction and decision making. Image and data fusion aims at the integration of multi-sensor, multi-temporal, multi-resolution and multi-platform image data, together with geospatial data, GIS, in-situ, and other statistical data sets for improved information extraction, as well as to increase the reliability of the information. This leads to more accurate information that provides for robust operational performance, i.e. increased confidence, reduced ambiguity and improved classification enabling evidence based management. The journal welcomes original research papers, review papers, shorter letters, technical articles, book reviews and conference reports in all areas of image and data fusion including, but not limited to, the following aspects and topics: • Automatic registration/geometric aspects of fusing images with different spatial, spectral, temporal resolutions; phase information; or acquired in different modes • Pixel, feature and decision level fusion algorithms and methodologies • Data Assimilation: fusing data with models • Multi-source classification and information extraction • Integration of satellite, airborne and terrestrial sensor systems • Fusing temporal data sets for change detection studies (e.g. for Land Cover/Land Use Change studies) • Image and data mining from multi-platform, multi-source, multi-scale, multi-temporal data sets (e.g. geometric information, topological information, statistical information, etc.).