一些商环上的可逆矩阵:识别、生成和分析

IF 0.3 Q4 MATHEMATICS, APPLIED
V. Vysotskaya, L. Vysotsky
{"title":"一些商环上的可逆矩阵:识别、生成和分析","authors":"V. Vysotskaya, L. Vysotsky","doi":"10.1515/dma-2022-0022","DOIUrl":null,"url":null,"abstract":"Abstract We study matrices over quotient rings modulo univariate polynomials over a two-element field. Lower bounds for the fraction of the invertible matrices among all such matrices of a given size are obtained. An efficient algorithm for calculating the determinant of matrices over these quotient rings and an algorithm for generating random invertible matrices (with uniform distribution on the set of all invertible matrices) are proposed and analyzed. An effective version of the latter algorithm for quotient rings modulo polynomials of form xr − 1 is considered and analyzed. These methods may find practical applications for generating keys of cryptographic schemes based on quasi-cyclic codes such as LEDAcrypt.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"32 1","pages":"263 - 278"},"PeriodicalIF":0.3000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Invertible matrices over some quotient rings: identification, generation, and analysis\",\"authors\":\"V. Vysotskaya, L. Vysotsky\",\"doi\":\"10.1515/dma-2022-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study matrices over quotient rings modulo univariate polynomials over a two-element field. Lower bounds for the fraction of the invertible matrices among all such matrices of a given size are obtained. An efficient algorithm for calculating the determinant of matrices over these quotient rings and an algorithm for generating random invertible matrices (with uniform distribution on the set of all invertible matrices) are proposed and analyzed. An effective version of the latter algorithm for quotient rings modulo polynomials of form xr − 1 is considered and analyzed. These methods may find practical applications for generating keys of cryptographic schemes based on quasi-cyclic codes such as LEDAcrypt.\",\"PeriodicalId\":11287,\"journal\":{\"name\":\"Discrete Mathematics and Applications\",\"volume\":\"32 1\",\"pages\":\"263 - 278\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dma-2022-0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2022-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

摘要研究了二元域上商环上的矩阵模一元多项式。得到了给定大小的所有可逆矩阵的分数的下界。提出并分析了一种计算这些商环上矩阵行列式的有效算法和生成随机可逆矩阵(在所有可逆矩阵的集合上均匀分布)的算法。考虑并分析了后一种算法对形式为xr−1的商环模多项式的有效版本。这些方法可以在基于准循环码(如LEDAcrypt)的密码方案的密钥生成中找到实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invertible matrices over some quotient rings: identification, generation, and analysis
Abstract We study matrices over quotient rings modulo univariate polynomials over a two-element field. Lower bounds for the fraction of the invertible matrices among all such matrices of a given size are obtained. An efficient algorithm for calculating the determinant of matrices over these quotient rings and an algorithm for generating random invertible matrices (with uniform distribution on the set of all invertible matrices) are proposed and analyzed. An effective version of the latter algorithm for quotient rings modulo polynomials of form xr − 1 is considered and analyzed. These methods may find practical applications for generating keys of cryptographic schemes based on quasi-cyclic codes such as LEDAcrypt.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信