{"title":"离子强度对AuNPs与小牛脾脏DNA相互作用的影响","authors":"Monira M. Rageh, M. H. Gaber, Samar M. Mostafa","doi":"10.1007/s13404-022-00322-y","DOIUrl":null,"url":null,"abstract":"<div><h2>Abstract\n</h2><div><p>Gold nanoparticles (AuNPs) are well-known biomedical and biotechnological applications because of their interesting properties. They easily cross the cell membranes and interact with intracellular materials. This study was designed to investigate the interaction of calf spleen DNA with AuNPs at a molar ratio of 2:1 in an aqueous solution with different ionic strengths (10, 50, and 100%). AuNPs and AuNPs/DNA complex were characterized by different techniques such as UV/Vis spectrophotometry, transmission electron microscopy (TEM), dynamic light scattering (DLS), and Fourier transform IR spectrophotometry. The results revealed that the maximum absorption (<i>λ</i><sub>max</sub>) of AuNPs synthesis was observed at 520 nm, and the average particle size was about 13 nm. In addition to a negative zeta potential (− 37 mV), the interaction of AuNPs with DNA was confirmed by melting point and TEM. The melting point that reflects the DNA became unstable in the presence of AuNPs, and the melting temperature decreased by about 3–5 °C with different ionic strength. Additionally, the TEM image of AuNPs/DNA complex obviously illustrated the location of AuNPs on the DNA groove. Finally, these results clearly indicate the attachment of AuNPs with DNA.</p></div></div>","PeriodicalId":581,"journal":{"name":"Gold Bulletin","volume":"56 1","pages":"23 - 30"},"PeriodicalIF":2.1000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13404-022-00322-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of ionic strength on the interaction of AuNPs with calf spleen DNA\",\"authors\":\"Monira M. Rageh, M. H. Gaber, Samar M. Mostafa\",\"doi\":\"10.1007/s13404-022-00322-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Abstract\\n</h2><div><p>Gold nanoparticles (AuNPs) are well-known biomedical and biotechnological applications because of their interesting properties. They easily cross the cell membranes and interact with intracellular materials. This study was designed to investigate the interaction of calf spleen DNA with AuNPs at a molar ratio of 2:1 in an aqueous solution with different ionic strengths (10, 50, and 100%). AuNPs and AuNPs/DNA complex were characterized by different techniques such as UV/Vis spectrophotometry, transmission electron microscopy (TEM), dynamic light scattering (DLS), and Fourier transform IR spectrophotometry. The results revealed that the maximum absorption (<i>λ</i><sub>max</sub>) of AuNPs synthesis was observed at 520 nm, and the average particle size was about 13 nm. In addition to a negative zeta potential (− 37 mV), the interaction of AuNPs with DNA was confirmed by melting point and TEM. The melting point that reflects the DNA became unstable in the presence of AuNPs, and the melting temperature decreased by about 3–5 °C with different ionic strength. Additionally, the TEM image of AuNPs/DNA complex obviously illustrated the location of AuNPs on the DNA groove. Finally, these results clearly indicate the attachment of AuNPs with DNA.</p></div></div>\",\"PeriodicalId\":581,\"journal\":{\"name\":\"Gold Bulletin\",\"volume\":\"56 1\",\"pages\":\"23 - 30\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13404-022-00322-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gold Bulletin\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13404-022-00322-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Bulletin","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13404-022-00322-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Effect of ionic strength on the interaction of AuNPs with calf spleen DNA
Abstract
Gold nanoparticles (AuNPs) are well-known biomedical and biotechnological applications because of their interesting properties. They easily cross the cell membranes and interact with intracellular materials. This study was designed to investigate the interaction of calf spleen DNA with AuNPs at a molar ratio of 2:1 in an aqueous solution with different ionic strengths (10, 50, and 100%). AuNPs and AuNPs/DNA complex were characterized by different techniques such as UV/Vis spectrophotometry, transmission electron microscopy (TEM), dynamic light scattering (DLS), and Fourier transform IR spectrophotometry. The results revealed that the maximum absorption (λmax) of AuNPs synthesis was observed at 520 nm, and the average particle size was about 13 nm. In addition to a negative zeta potential (− 37 mV), the interaction of AuNPs with DNA was confirmed by melting point and TEM. The melting point that reflects the DNA became unstable in the presence of AuNPs, and the melting temperature decreased by about 3–5 °C with different ionic strength. Additionally, the TEM image of AuNPs/DNA complex obviously illustrated the location of AuNPs on the DNA groove. Finally, these results clearly indicate the attachment of AuNPs with DNA.
期刊介绍:
Gold Bulletin is the premier international peer reviewed journal on the latest science, technology and applications of gold. It includes papers on the latest research advances, state-of-the-art reviews, conference reports, book reviews and highlights of patents and scientific literature. Gold Bulletin does not publish manuscripts covering the snthesis of Gold nanoparticles in the presence of plant extracts or other nature-derived extracts. Gold Bulletin has been published over 40 years as a multidisciplinary journal read by chemists, physicists, engineers, metallurgists, materials scientists, biotechnologists, surface scientists, and nanotechnologists amongst others, both within industry and academia. Gold Bulletin is published in Association with the World Gold Council.