{"title":"闵可夫斯基时空超曲面上的扩展双保守性条件","authors":"F. Pashaie","doi":"10.30495/JME.V0I0.1760","DOIUrl":null,"url":null,"abstract":"Isoparametric hypersurfaces of Lorentz-Minkowski spaces,classied by M.A. Magid in 1985, is related to the famous family of bi-conservative hypersurfaces. Such a hypersurface has conservative stress-energy with respect to the bienergy functional. A timelike (Lorentzian)hypersurface x : M_1^n ----> E_1^{n+1}, isometrically immersed into the Lorentz-Minkowski space E_1^{n+1} , is said to be biconservative if the tangent com-ponent of vector eld \\Delta^2 x on M_1^n is identically zero. In this paper,we study on L_k-extension of biconservativity condition. The map L_k on a hypersurface (as the kth extension of Laplace operator L_0 = \\Delta) is the linearized operator arisen from the rst variation of (k + 1)th mean curvature of hypersurface. After illustrating some examples, we prove that an L_k-biconservative timlike hypersurface of E_1^{n+1}, with atmost two distinct principal curvatures and some additional conditions,is isoparametric.","PeriodicalId":43745,"journal":{"name":"Journal of Mathematical Extension","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extended bi-conservativity condition on hypersurfaces of the Minkowski spacetime\",\"authors\":\"F. Pashaie\",\"doi\":\"10.30495/JME.V0I0.1760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Isoparametric hypersurfaces of Lorentz-Minkowski spaces,classied by M.A. Magid in 1985, is related to the famous family of bi-conservative hypersurfaces. Such a hypersurface has conservative stress-energy with respect to the bienergy functional. A timelike (Lorentzian)hypersurface x : M_1^n ----> E_1^{n+1}, isometrically immersed into the Lorentz-Minkowski space E_1^{n+1} , is said to be biconservative if the tangent com-ponent of vector eld \\\\Delta^2 x on M_1^n is identically zero. In this paper,we study on L_k-extension of biconservativity condition. The map L_k on a hypersurface (as the kth extension of Laplace operator L_0 = \\\\Delta) is the linearized operator arisen from the rst variation of (k + 1)th mean curvature of hypersurface. After illustrating some examples, we prove that an L_k-biconservative timlike hypersurface of E_1^{n+1}, with atmost two distinct principal curvatures and some additional conditions,is isoparametric.\",\"PeriodicalId\":43745,\"journal\":{\"name\":\"Journal of Mathematical Extension\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Extension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30495/JME.V0I0.1760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Extension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JME.V0I0.1760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
An extended bi-conservativity condition on hypersurfaces of the Minkowski spacetime
Isoparametric hypersurfaces of Lorentz-Minkowski spaces,classied by M.A. Magid in 1985, is related to the famous family of bi-conservative hypersurfaces. Such a hypersurface has conservative stress-energy with respect to the bienergy functional. A timelike (Lorentzian)hypersurface x : M_1^n ----> E_1^{n+1}, isometrically immersed into the Lorentz-Minkowski space E_1^{n+1} , is said to be biconservative if the tangent com-ponent of vector eld \Delta^2 x on M_1^n is identically zero. In this paper,we study on L_k-extension of biconservativity condition. The map L_k on a hypersurface (as the kth extension of Laplace operator L_0 = \Delta) is the linearized operator arisen from the rst variation of (k + 1)th mean curvature of hypersurface. After illustrating some examples, we prove that an L_k-biconservative timlike hypersurface of E_1^{n+1}, with atmost two distinct principal curvatures and some additional conditions,is isoparametric.