闵可夫斯基时空超曲面上的扩展双保守性条件

IF 0.4 Q4 MATHEMATICS
F. Pashaie
{"title":"闵可夫斯基时空超曲面上的扩展双保守性条件","authors":"F. Pashaie","doi":"10.30495/JME.V0I0.1760","DOIUrl":null,"url":null,"abstract":"Isoparametric hypersurfaces of Lorentz-Minkowski spaces,classied by M.A. Magid in 1985, is related to the famous family of bi-conservative hypersurfaces. Such a hypersurface has conservative stress-energy with respect to the bienergy functional. A timelike (Lorentzian)hypersurface x : M_1^n ----> E_1^{n+1}, isometrically immersed into the Lorentz-Minkowski space E_1^{n+1} , is said to be biconservative if the tangent com-ponent of vector eld \\Delta^2 x on M_1^n is identically zero. In this paper,we study on L_k-extension of biconservativity condition. The map L_k on a hypersurface (as the kth extension of Laplace operator L_0 = \\Delta) is the linearized operator arisen from the rst variation of (k + 1)th mean curvature of hypersurface. After illustrating some examples, we prove that an L_k-biconservative timlike hypersurface of E_1^{n+1}, with atmost two distinct principal curvatures and some additional conditions,is isoparametric.","PeriodicalId":43745,"journal":{"name":"Journal of Mathematical Extension","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extended bi-conservativity condition on hypersurfaces of the Minkowski spacetime\",\"authors\":\"F. Pashaie\",\"doi\":\"10.30495/JME.V0I0.1760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Isoparametric hypersurfaces of Lorentz-Minkowski spaces,classied by M.A. Magid in 1985, is related to the famous family of bi-conservative hypersurfaces. Such a hypersurface has conservative stress-energy with respect to the bienergy functional. A timelike (Lorentzian)hypersurface x : M_1^n ----> E_1^{n+1}, isometrically immersed into the Lorentz-Minkowski space E_1^{n+1} , is said to be biconservative if the tangent com-ponent of vector eld \\\\Delta^2 x on M_1^n is identically zero. In this paper,we study on L_k-extension of biconservativity condition. The map L_k on a hypersurface (as the kth extension of Laplace operator L_0 = \\\\Delta) is the linearized operator arisen from the rst variation of (k + 1)th mean curvature of hypersurface. After illustrating some examples, we prove that an L_k-biconservative timlike hypersurface of E_1^{n+1}, with atmost two distinct principal curvatures and some additional conditions,is isoparametric.\",\"PeriodicalId\":43745,\"journal\":{\"name\":\"Journal of Mathematical Extension\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Extension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30495/JME.V0I0.1760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Extension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JME.V0I0.1760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Lorentz-Minkowski空间的等参超曲面,由M.A.Magid于1985年分类,与著名的双保守超曲面族有关。这样的超曲面相对于双能泛函具有保守的应力能。等距浸入洛伦兹-闵可夫斯基空间E_1^{n+1}的类时间(洛伦兹)超曲面x:M_1^n----->E_1^{n+1},如果向量eld\Delta^2 x在M_1^n上的正切分量为零,则称其为双守恒曲面。本文研究了双守恒条件的L_k扩张。超曲面上的映射L_k(作为拉普拉斯算子L_0=\Delta的第k个扩展)是由超曲面的第(k+1)个平均曲率的第一次变化引起的线性化算子。在举例说明后,我们证明了E_1^{n+1}的L_k双守恒类激励超曲面是等参的,该曲面至少有两个不同的主曲率和一些附加条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An extended bi-conservativity condition on hypersurfaces of the Minkowski spacetime
Isoparametric hypersurfaces of Lorentz-Minkowski spaces,classied by M.A. Magid in 1985, is related to the famous family of bi-conservative hypersurfaces. Such a hypersurface has conservative stress-energy with respect to the bienergy functional. A timelike (Lorentzian)hypersurface x : M_1^n ----> E_1^{n+1}, isometrically immersed into the Lorentz-Minkowski space E_1^{n+1} , is said to be biconservative if the tangent com-ponent of vector eld \Delta^2 x on M_1^n is identically zero. In this paper,we study on L_k-extension of biconservativity condition. The map L_k on a hypersurface (as the kth extension of Laplace operator L_0 = \Delta) is the linearized operator arisen from the rst variation of (k + 1)th mean curvature of hypersurface. After illustrating some examples, we prove that an L_k-biconservative timlike hypersurface of E_1^{n+1}, with atmost two distinct principal curvatures and some additional conditions,is isoparametric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
68
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信