$Q$-流形和$l_2$-流形的同调刻画

Pub Date : 2020-12-01 DOI:10.4064/fm68-3-2022
A. Karassev, V. Valov
{"title":"$Q$-流形和$l_2$-流形的同调刻画","authors":"A. Karassev, V. Valov","doi":"10.4064/fm68-3-2022","DOIUrl":null,"url":null,"abstract":"We investigate to what extend the density of $Z_n$-maps in the characterization of $Q$-manifolds, and the density of maps $f\\in C(\\mathbb N\\times Q,X)$ having discrete images in the $l_2$-manifolds characterization can be weakened to the density of homological $Z_n$-maps and homological $Z$-maps, respectively. As a result, we obtain homological characterizations of $Q$-manifolds and $l_2$-manifolds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Homological characterizations of\\n$Q$-manifolds and $l_2$-manifolds\",\"authors\":\"A. Karassev, V. Valov\",\"doi\":\"10.4064/fm68-3-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate to what extend the density of $Z_n$-maps in the characterization of $Q$-manifolds, and the density of maps $f\\\\in C(\\\\mathbb N\\\\times Q,X)$ having discrete images in the $l_2$-manifolds characterization can be weakened to the density of homological $Z_n$-maps and homological $Z$-maps, respectively. As a result, we obtain homological characterizations of $Q$-manifolds and $l_2$-manifolds.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/fm68-3-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm68-3-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了$Q$-流形表征中$Z_n$-映射的密度的扩展,以及在$l_2$-流形刻画中具有离散图像的C(\mathbb n\times Q,X)$中映射$f\的密度可以分别减弱为同源$Z_n$映射和同源$Z$-映射。结果,我们得到了$Q$-流形和$l_2$-流形的同调刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Homological characterizations of $Q$-manifolds and $l_2$-manifolds
We investigate to what extend the density of $Z_n$-maps in the characterization of $Q$-manifolds, and the density of maps $f\in C(\mathbb N\times Q,X)$ having discrete images in the $l_2$-manifolds characterization can be weakened to the density of homological $Z_n$-maps and homological $Z$-maps, respectively. As a result, we obtain homological characterizations of $Q$-manifolds and $l_2$-manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信