界面活性蛋白对水性杂化材料中盐晶体尺寸的影响

IF 1.68 Q2 Dentistry
Stephani Stamboroski, Kwasi Boateng, Welchy Leite Cavalcanti, Michael Noeske, Vinicius Carrillo Beber, Karsten Thiel, Ingo Grunwald, Peter Schiffels, Stefan Dieckhoff, Dorothea Brüggemann
{"title":"界面活性蛋白对水性杂化材料中盐晶体尺寸的影响","authors":"Stephani Stamboroski,&nbsp;Kwasi Boateng,&nbsp;Welchy Leite Cavalcanti,&nbsp;Michael Noeske,&nbsp;Vinicius Carrillo Beber,&nbsp;Karsten Thiel,&nbsp;Ingo Grunwald,&nbsp;Peter Schiffels,&nbsp;Stefan Dieckhoff,&nbsp;Dorothea Brüggemann","doi":"10.1186/s40563-021-00137-8","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous processes yielding hybrid or composite materials are widespread in natural environments and their control is fundamental for a multiplicity of living organisms. Their design and in vitro engineering require knowledge about the spatiotemporal evolution of the interactions between the involved liquid and solid phases and, especially, the interphases governing the development of adhesion during solidification. The present study illustrates the effects of distinct proteins on the precipitation of sodium chloride encompassing the size, shape and distribution of halite crystals formed during the drying of droplets containing equally concentrated saline protein solutions. The precipitates obtained from aqueous sodium chloride formulations buffered with tris(hydroxymethyl)aminomethane (Tris) contained either bovine serum albumin (BSA), fibrinogen or collagen and were characterized with respect to their structure and composition using optical and electron microscopy as well as x-ray analysis. The acquired findings highlight that depending on the protein type present during droplet drying the halite deposits predominantly exhibit cubic or polycrystalline dendritic structures. Based on the phenomenological findings, it is suggested that the formation of the interphase between the growing salt phase and the highly viscous saline aqueous jelly phase containing protein governs not only the material transport in the liquid but also the material exchange between the solid and liquid phases.</p></div>","PeriodicalId":464,"journal":{"name":"Applied Adhesion Science","volume":"9 1","pages":""},"PeriodicalIF":1.6800,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://appliedadhesionscience.springeropen.com/counter/pdf/10.1186/s40563-021-00137-8","citationCount":"0","resultStr":"{\"title\":\"Effect of interface-active proteins on the salt crystal size in waterborne hybrid materials\",\"authors\":\"Stephani Stamboroski,&nbsp;Kwasi Boateng,&nbsp;Welchy Leite Cavalcanti,&nbsp;Michael Noeske,&nbsp;Vinicius Carrillo Beber,&nbsp;Karsten Thiel,&nbsp;Ingo Grunwald,&nbsp;Peter Schiffels,&nbsp;Stefan Dieckhoff,&nbsp;Dorothea Brüggemann\",\"doi\":\"10.1186/s40563-021-00137-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aqueous processes yielding hybrid or composite materials are widespread in natural environments and their control is fundamental for a multiplicity of living organisms. Their design and in vitro engineering require knowledge about the spatiotemporal evolution of the interactions between the involved liquid and solid phases and, especially, the interphases governing the development of adhesion during solidification. The present study illustrates the effects of distinct proteins on the precipitation of sodium chloride encompassing the size, shape and distribution of halite crystals formed during the drying of droplets containing equally concentrated saline protein solutions. The precipitates obtained from aqueous sodium chloride formulations buffered with tris(hydroxymethyl)aminomethane (Tris) contained either bovine serum albumin (BSA), fibrinogen or collagen and were characterized with respect to their structure and composition using optical and electron microscopy as well as x-ray analysis. The acquired findings highlight that depending on the protein type present during droplet drying the halite deposits predominantly exhibit cubic or polycrystalline dendritic structures. Based on the phenomenological findings, it is suggested that the formation of the interphase between the growing salt phase and the highly viscous saline aqueous jelly phase containing protein governs not only the material transport in the liquid but also the material exchange between the solid and liquid phases.</p></div>\",\"PeriodicalId\":464,\"journal\":{\"name\":\"Applied Adhesion Science\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6800,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://appliedadhesionscience.springeropen.com/counter/pdf/10.1186/s40563-021-00137-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Adhesion Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40563-021-00137-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Dentistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Adhesion Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40563-021-00137-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 0

摘要

在自然环境中,产生混合或复合材料的水过程非常普遍,对它们的控制对多种生物体来说至关重要。它们的设计和体外工程需要了解相关液相和固相之间相互作用的时空演变,特别是凝固过程中控制粘附发展的相间关系。本研究说明了不同蛋白质对氯化钠沉淀的影响,包括在干燥含有同等浓度盐类蛋白质溶液的液滴时形成的海泡石晶体的大小、形状和分布。从三(羟甲基)氨基甲烷(Tris)缓冲的氯化钠水溶液中获得的沉淀物含有牛血清白蛋白(BSA)、纤维蛋白原或胶原,并利用光学和电子显微镜以及 X 射线分析对其结构和组成进行了表征。获得的研究结果表明,根据液滴干燥过程中存在的蛋白质类型,海泡石沉积物主要呈现立方或多晶树枝状结构。根据现象学发现,生长中的盐相和含有蛋白质的高粘度盐水胶冻相之间形成的相间不仅影响液体中的物质传输,还影响固相和液相之间的物质交换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of interface-active proteins on the salt crystal size in waterborne hybrid materials

Aqueous processes yielding hybrid or composite materials are widespread in natural environments and their control is fundamental for a multiplicity of living organisms. Their design and in vitro engineering require knowledge about the spatiotemporal evolution of the interactions between the involved liquid and solid phases and, especially, the interphases governing the development of adhesion during solidification. The present study illustrates the effects of distinct proteins on the precipitation of sodium chloride encompassing the size, shape and distribution of halite crystals formed during the drying of droplets containing equally concentrated saline protein solutions. The precipitates obtained from aqueous sodium chloride formulations buffered with tris(hydroxymethyl)aminomethane (Tris) contained either bovine serum albumin (BSA), fibrinogen or collagen and were characterized with respect to their structure and composition using optical and electron microscopy as well as x-ray analysis. The acquired findings highlight that depending on the protein type present during droplet drying the halite deposits predominantly exhibit cubic or polycrystalline dendritic structures. Based on the phenomenological findings, it is suggested that the formation of the interphase between the growing salt phase and the highly viscous saline aqueous jelly phase containing protein governs not only the material transport in the liquid but also the material exchange between the solid and liquid phases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Adhesion Science
Applied Adhesion Science Dentistry-Dentistry (miscellaneous)
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: Applied Adhesion Science focuses on practical applications of adhesives, with special emphasis in fields such as oil industry, aerospace and biomedicine. Topics related to the phenomena of adhesion and the application of adhesive materials are welcome, especially in biomedical areas such as adhesive dentistry. Both theoretical and experimental works are considered for publication. Applied Adhesion Science is a peer-reviewed open access journal published under the SpringerOpen brand. The journal''s open access policy offers a fast publication workflow whilst maintaining rigorous peer review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信