{"title":"一种有效的基于多值神经网络逆建模的天线阵列诊断方法","authors":"O. J. Famoriji, T. Shongwe","doi":"10.7716/aem.v10i3.1784","DOIUrl":null,"url":null,"abstract":"Failure of element (s) in antenna arrays impair (s) symmetry and lead to unwanted distorted radiation pattern. The replacement of defective elements in aircraft antennas is a solution to the problem, but it remains a critical problem in space stations. In this paper, an antenna array diagnosis technique based on multivalued neural network (mNN) inverse modeling is proposed. Since inverse analytical input-to-output formulation is generally a challenging and important task in solving the inverse problem of array diagnosis, ANN is a compelling alternative, because it is trainable and learns from data in inverse modelling. The mNN technique proposed is an inverse modelling technique, which accommodates measurements for output model. This network takes radiation pattern samples with faults and matches it to the corresponding position or location of the faulty elements in that antenna array. In addition, we develop a new training error function, which focuses on the matching of each training sample by a value of our proposed inverse model, while the remaining values are free, and trained to match distorted radiation patterns. Thereby, mNN learns all training data by redirecting the faulty elements patterns into various values of the inverse model. Therefore, mNN is able to perform accurate array diagnosis in an automated and simpler manner.","PeriodicalId":44653,"journal":{"name":"Advanced Electromagnetics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Effective Antenna Array Diagnosis Method via Multivalued Neural Network Inverse Modeling Approach\",\"authors\":\"O. J. Famoriji, T. Shongwe\",\"doi\":\"10.7716/aem.v10i3.1784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Failure of element (s) in antenna arrays impair (s) symmetry and lead to unwanted distorted radiation pattern. The replacement of defective elements in aircraft antennas is a solution to the problem, but it remains a critical problem in space stations. In this paper, an antenna array diagnosis technique based on multivalued neural network (mNN) inverse modeling is proposed. Since inverse analytical input-to-output formulation is generally a challenging and important task in solving the inverse problem of array diagnosis, ANN is a compelling alternative, because it is trainable and learns from data in inverse modelling. The mNN technique proposed is an inverse modelling technique, which accommodates measurements for output model. This network takes radiation pattern samples with faults and matches it to the corresponding position or location of the faulty elements in that antenna array. In addition, we develop a new training error function, which focuses on the matching of each training sample by a value of our proposed inverse model, while the remaining values are free, and trained to match distorted radiation patterns. Thereby, mNN learns all training data by redirecting the faulty elements patterns into various values of the inverse model. Therefore, mNN is able to perform accurate array diagnosis in an automated and simpler manner.\",\"PeriodicalId\":44653,\"journal\":{\"name\":\"Advanced Electromagnetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electromagnetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7716/aem.v10i3.1784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7716/aem.v10i3.1784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Effective Antenna Array Diagnosis Method via Multivalued Neural Network Inverse Modeling Approach
Failure of element (s) in antenna arrays impair (s) symmetry and lead to unwanted distorted radiation pattern. The replacement of defective elements in aircraft antennas is a solution to the problem, but it remains a critical problem in space stations. In this paper, an antenna array diagnosis technique based on multivalued neural network (mNN) inverse modeling is proposed. Since inverse analytical input-to-output formulation is generally a challenging and important task in solving the inverse problem of array diagnosis, ANN is a compelling alternative, because it is trainable and learns from data in inverse modelling. The mNN technique proposed is an inverse modelling technique, which accommodates measurements for output model. This network takes radiation pattern samples with faults and matches it to the corresponding position or location of the faulty elements in that antenna array. In addition, we develop a new training error function, which focuses on the matching of each training sample by a value of our proposed inverse model, while the remaining values are free, and trained to match distorted radiation patterns. Thereby, mNN learns all training data by redirecting the faulty elements patterns into various values of the inverse model. Therefore, mNN is able to perform accurate array diagnosis in an automated and simpler manner.
期刊介绍:
Advanced Electromagnetics, is electronic peer-reviewed open access journal that publishes original research articles as well as review articles in all areas of electromagnetic science and engineering. The aim of the journal is to become a premier open access source of high quality research that spans the entire broad field of electromagnetics from classic to quantum electrodynamics.