高斯和lsamvy过程的局部时间

IF 0.3 Q4 STATISTICS & PROBABILITY
Zineb Boudebane, Anis Rezgui
{"title":"高斯和lsamvy过程的局部时间","authors":"Zineb Boudebane, Anis Rezgui","doi":"10.1515/rose-2023-2017","DOIUrl":null,"url":null,"abstract":"Abstract The local time (LT) of a given stochastic process { X t : t ≥ 0 } \\{X_{t}:t\\geq 0\\} is defined informally as L X ⁢ ( t , x ) = ∫ 0 t δ x ⁢ ( X s ) ⁢ d s , L_{X}(t,x)=\\int_{0}^{t}\\delta_{x}(X_{s})\\,ds, where δ x \\delta_{x} denotes the Dirac function; actually, it counts the duration of the process’s stay at 𝑥 up to time 𝑡. Using an approximation approach, we study the existence and the regularity of the LT process for two kinds of stochastic processes. The first type is the stochastic process defined by the indefinite Wiener integral X t := ∫ 0 t f ⁢ ( u ) ⁢ d B u X_{t}:=\\int_{0}^{t}f(u)\\,dB_{u} for a given deterministic function f ∈ L 2 ( [ 0 , + ∞ [ ) f\\in L^{2}([0,+\\infty[) , and secondly, for Lévy type processes, i.e. ones that are stationary and with independent increments.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the local time of Gaussian and Lévy processes\",\"authors\":\"Zineb Boudebane, Anis Rezgui\",\"doi\":\"10.1515/rose-2023-2017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The local time (LT) of a given stochastic process { X t : t ≥ 0 } \\\\{X_{t}:t\\\\geq 0\\\\} is defined informally as L X ⁢ ( t , x ) = ∫ 0 t δ x ⁢ ( X s ) ⁢ d s , L_{X}(t,x)=\\\\int_{0}^{t}\\\\delta_{x}(X_{s})\\\\,ds, where δ x \\\\delta_{x} denotes the Dirac function; actually, it counts the duration of the process’s stay at 𝑥 up to time 𝑡. Using an approximation approach, we study the existence and the regularity of the LT process for two kinds of stochastic processes. The first type is the stochastic process defined by the indefinite Wiener integral X t := ∫ 0 t f ⁢ ( u ) ⁢ d B u X_{t}:=\\\\int_{0}^{t}f(u)\\\\,dB_{u} for a given deterministic function f ∈ L 2 ( [ 0 , + ∞ [ ) f\\\\in L^{2}([0,+\\\\infty[) , and secondly, for Lévy type processes, i.e. ones that are stationary and with independent increments.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2023-2017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2023-2017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要给定随机过程{X t:t≥0}\{X_{t}:t\geq 0\}的局部时间(LT)被非正式地定义为L X≠(t, X)=∫0 t δ X≠(X s)∑ds, L_{X}(t, X)=\int_{0}^{t}\delta_{X}(X_{s})\,ds,其中δ X \delta_{X}表示Dirac函数;实际上,它会一直计算流程在端点处停留的时间𝑡。用近似方法研究了两类随机过程的LT过程的存在性和正则性。第一类是随机过程,定义为不定维纳积分X t:=∫0 t f _ (u) dB u X_{t}:=\int_{0}^{t}f(u)\,对于给定的确定性函数f∈l2([0,+∞[)f\in L^{2}([0,+\infty[)),dB_{u};第二类是l型过程,即平稳且具有独立增量的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the local time of Gaussian and Lévy processes
Abstract The local time (LT) of a given stochastic process { X t : t ≥ 0 } \{X_{t}:t\geq 0\} is defined informally as L X ⁢ ( t , x ) = ∫ 0 t δ x ⁢ ( X s ) ⁢ d s , L_{X}(t,x)=\int_{0}^{t}\delta_{x}(X_{s})\,ds, where δ x \delta_{x} denotes the Dirac function; actually, it counts the duration of the process’s stay at 𝑥 up to time 𝑡. Using an approximation approach, we study the existence and the regularity of the LT process for two kinds of stochastic processes. The first type is the stochastic process defined by the indefinite Wiener integral X t := ∫ 0 t f ⁢ ( u ) ⁢ d B u X_{t}:=\int_{0}^{t}f(u)\,dB_{u} for a given deterministic function f ∈ L 2 ( [ 0 , + ∞ [ ) f\in L^{2}([0,+\infty[) , and secondly, for Lévy type processes, i.e. ones that are stationary and with independent increments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信