R. Uddin, Mehnaz Tabassum Mahin, Payas Rajan, C. Ravishankar, V. Tsotras
{"title":"居住区域:流和存档轨迹数据的广义停留区域","authors":"R. Uddin, Mehnaz Tabassum Mahin, Payas Rajan, C. Ravishankar, V. Tsotras","doi":"10.1145/3543850","DOIUrl":null,"url":null,"abstract":"A region ℛ is a dwell region for a moving object O if, given a threshold distance rq and duration τq, every point of ℛ remains within distance rq from O for at least time τq. Points within ℛ are likely to be of interest to O, so identification of dwell regions has applications such as monitoring and surveillance. We first present a logarithmic-time online algorithm to find dwell regions in an incoming stream of object positions. Our method maintains the upper and lower bounds for the radius of the smallest circle enclosing the object positions, thereby greatly reducing the number of trajectory points needed to evaluate the query. It approximates the radius of the smallest circle enclosing a given subtrajectory within an arbitrarily small user-defined factor and is also able to efficiently answer decision queries asking whether or not a dwell region exists. For the offline version of the dwell region problem, we first extend our online approach to develop the ρ-Index, which indexes subtrajectories using query radius ranges. We then refine this approach to obtain the τ-Index, which indexes subtrajectories using both query radius ranges and dwell durations. Our experiments using both real-world and synthetic datasets show that the online approach can scale up to hundreds of thousands of moving objects. For archived trajectories, our indexing approaches speed up queries by many orders of magnitude.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":"9 1","pages":"1 - 35"},"PeriodicalIF":1.2000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dwell Regions: Generalized Stay Regions for Streaming and Archival Trajectory Data\",\"authors\":\"R. Uddin, Mehnaz Tabassum Mahin, Payas Rajan, C. Ravishankar, V. Tsotras\",\"doi\":\"10.1145/3543850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A region ℛ is a dwell region for a moving object O if, given a threshold distance rq and duration τq, every point of ℛ remains within distance rq from O for at least time τq. Points within ℛ are likely to be of interest to O, so identification of dwell regions has applications such as monitoring and surveillance. We first present a logarithmic-time online algorithm to find dwell regions in an incoming stream of object positions. Our method maintains the upper and lower bounds for the radius of the smallest circle enclosing the object positions, thereby greatly reducing the number of trajectory points needed to evaluate the query. It approximates the radius of the smallest circle enclosing a given subtrajectory within an arbitrarily small user-defined factor and is also able to efficiently answer decision queries asking whether or not a dwell region exists. For the offline version of the dwell region problem, we first extend our online approach to develop the ρ-Index, which indexes subtrajectories using query radius ranges. We then refine this approach to obtain the τ-Index, which indexes subtrajectories using both query radius ranges and dwell durations. Our experiments using both real-world and synthetic datasets show that the online approach can scale up to hundreds of thousands of moving objects. For archived trajectories, our indexing approaches speed up queries by many orders of magnitude.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":\"9 1\",\"pages\":\"1 - 35\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3543850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Dwell Regions: Generalized Stay Regions for Streaming and Archival Trajectory Data
A region ℛ is a dwell region for a moving object O if, given a threshold distance rq and duration τq, every point of ℛ remains within distance rq from O for at least time τq. Points within ℛ are likely to be of interest to O, so identification of dwell regions has applications such as monitoring and surveillance. We first present a logarithmic-time online algorithm to find dwell regions in an incoming stream of object positions. Our method maintains the upper and lower bounds for the radius of the smallest circle enclosing the object positions, thereby greatly reducing the number of trajectory points needed to evaluate the query. It approximates the radius of the smallest circle enclosing a given subtrajectory within an arbitrarily small user-defined factor and is also able to efficiently answer decision queries asking whether or not a dwell region exists. For the offline version of the dwell region problem, we first extend our online approach to develop the ρ-Index, which indexes subtrajectories using query radius ranges. We then refine this approach to obtain the τ-Index, which indexes subtrajectories using both query radius ranges and dwell durations. Our experiments using both real-world and synthetic datasets show that the online approach can scale up to hundreds of thousands of moving objects. For archived trajectories, our indexing approaches speed up queries by many orders of magnitude.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.