海藻糖在单个网络内的分子运动,使其能够快速恢复坚韧的水凝胶

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaowen Huang, Jimin Fu, Huiyan Tan, Yan Miu, Mengda Xu, Qiuhua Zhao, Yujie Xie, Shengtong Sun, H. Yao, Lidong Zhang
{"title":"海藻糖在单个网络内的分子运动,使其能够快速恢复坚韧的水凝胶","authors":"Xiaowen Huang, Jimin Fu, Huiyan Tan, Yan Miu, Mengda Xu, Qiuhua Zhao, Yujie Xie, Shengtong Sun, H. Yao, Lidong Zhang","doi":"10.1080/19475411.2022.2116735","DOIUrl":null,"url":null,"abstract":"ABSTRACT It remains a challenge to achieve rapidly recoverable hydrogels by molecular hydrogen-bonding interaction because of its slow interaction kinetics. This work for the first time reports a trehalose (Tre)-based molecular movement mechanism inside a single network of polyacrylamide (PAM) that accelerates the kinetics of hydrogen-bonding interaction, and thereby endows the hydrogel with high toughness and rapid shape and mechanical recoverability. The resultant PAM@Tre hydrogel is capable of full shape recovery after 10,000 loading/unloading cycles at a strain of 500%. Even after being stretched at a strain of 2500%, it can recover to its original shape within 10 seconds. Moreover, the molecular movement of trehalose also endows the PAM@Tre hydrogel with fracture energy and toughness as high as ~9000 J m–2 and ~1600 kJ m–3, respectively, leading to strong resistance to both static and dynamic piercing. The PAM@Tre hydrogel is thus believed to have enormous potentials in protection devices, bionic skin, soft actuator, and stretchable electronics. Graphical abstract","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":"13 1","pages":"575 - 596"},"PeriodicalIF":4.5000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Molecular movements of trehalose inside a single network enabling a rapidly-recoverable tough hydrogel\",\"authors\":\"Xiaowen Huang, Jimin Fu, Huiyan Tan, Yan Miu, Mengda Xu, Qiuhua Zhao, Yujie Xie, Shengtong Sun, H. Yao, Lidong Zhang\",\"doi\":\"10.1080/19475411.2022.2116735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT It remains a challenge to achieve rapidly recoverable hydrogels by molecular hydrogen-bonding interaction because of its slow interaction kinetics. This work for the first time reports a trehalose (Tre)-based molecular movement mechanism inside a single network of polyacrylamide (PAM) that accelerates the kinetics of hydrogen-bonding interaction, and thereby endows the hydrogel with high toughness and rapid shape and mechanical recoverability. The resultant PAM@Tre hydrogel is capable of full shape recovery after 10,000 loading/unloading cycles at a strain of 500%. Even after being stretched at a strain of 2500%, it can recover to its original shape within 10 seconds. Moreover, the molecular movement of trehalose also endows the PAM@Tre hydrogel with fracture energy and toughness as high as ~9000 J m–2 and ~1600 kJ m–3, respectively, leading to strong resistance to both static and dynamic piercing. The PAM@Tre hydrogel is thus believed to have enormous potentials in protection devices, bionic skin, soft actuator, and stretchable electronics. Graphical abstract\",\"PeriodicalId\":48516,\"journal\":{\"name\":\"International Journal of Smart and Nano Materials\",\"volume\":\"13 1\",\"pages\":\"575 - 596\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Smart and Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/19475411.2022.2116735\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart and Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/19475411.2022.2116735","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要:由于分子氢键相互作用动力学缓慢,要实现快速可回收的水凝胶仍然是一个挑战。这项工作首次报道了聚丙烯酰胺(PAM)单个网络内基于海藻糖(Tre)的分子运动机制,该机制加速了氢键相互作用的动力学,从而赋予水凝胶高韧性、快速的形状和机械可恢复性。结果PAM@Tre水凝胶能够在500%的应变下在10000次加载/卸载循环后完全恢复形状。即使在2500%的应变下拉伸,它也可以在10秒内恢复到原来的形状。此外,海藻糖的分子运动也赋予PAM@Tre水凝胶的断裂能和韧性分别高达~9000 J m–2和~1600 kJ m–3,对静态和动态穿孔都具有很强的抵抗力。这个PAM@Tre因此,水凝胶被认为在保护装置、仿生皮肤、软致动器和可拉伸电子产品方面具有巨大的潜力。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular movements of trehalose inside a single network enabling a rapidly-recoverable tough hydrogel
ABSTRACT It remains a challenge to achieve rapidly recoverable hydrogels by molecular hydrogen-bonding interaction because of its slow interaction kinetics. This work for the first time reports a trehalose (Tre)-based molecular movement mechanism inside a single network of polyacrylamide (PAM) that accelerates the kinetics of hydrogen-bonding interaction, and thereby endows the hydrogel with high toughness and rapid shape and mechanical recoverability. The resultant PAM@Tre hydrogel is capable of full shape recovery after 10,000 loading/unloading cycles at a strain of 500%. Even after being stretched at a strain of 2500%, it can recover to its original shape within 10 seconds. Moreover, the molecular movement of trehalose also endows the PAM@Tre hydrogel with fracture energy and toughness as high as ~9000 J m–2 and ~1600 kJ m–3, respectively, leading to strong resistance to both static and dynamic piercing. The PAM@Tre hydrogel is thus believed to have enormous potentials in protection devices, bionic skin, soft actuator, and stretchable electronics. Graphical abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Smart and Nano Materials
International Journal of Smart and Nano Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.30
自引率
5.10%
发文量
39
审稿时长
11 weeks
期刊介绍: The central aim of International Journal of Smart and Nano Materials is to publish original results, critical reviews, technical discussion, and book reviews related to this compelling research field: smart and nano materials, and their applications. The papers published in this journal will provide cutting edge information and instructive research guidance, encouraging more scientists to make their contribution to this dynamic research field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信