Thorranin Thansri, T. Srichan, Pinthira Tangsupphathawat
{"title":"等差数列中至多为x阶的半单环数的分布","authors":"Thorranin Thansri, T. Srichan, Pinthira Tangsupphathawat","doi":"10.7546/nntdm.2023.29.1.17-23","DOIUrl":null,"url":null,"abstract":"Let \\ell and q denote relatively prime positive integers. In this article, we derive the asymptotic formula for the summation \\begin{align*} \\sum_{n\\leq x\\atop n\\equiv \\ell \\pmod q}S(n), \\end{align*} where S(n) denotes the number of non-isomorphic finite semisimple rings with n elements.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On distribution of the number of semisimple rings of order at most x in an arithmetic progression\",\"authors\":\"Thorranin Thansri, T. Srichan, Pinthira Tangsupphathawat\",\"doi\":\"10.7546/nntdm.2023.29.1.17-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\ell and q denote relatively prime positive integers. In this article, we derive the asymptotic formula for the summation \\\\begin{align*} \\\\sum_{n\\\\leq x\\\\atop n\\\\equiv \\\\ell \\\\pmod q}S(n), \\\\end{align*} where S(n) denotes the number of non-isomorphic finite semisimple rings with n elements.\",\"PeriodicalId\":44060,\"journal\":{\"name\":\"Notes on Number Theory and Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Number Theory and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nntdm.2023.29.1.17-23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.1.17-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On distribution of the number of semisimple rings of order at most x in an arithmetic progression
Let \ell and q denote relatively prime positive integers. In this article, we derive the asymptotic formula for the summation \begin{align*} \sum_{n\leq x\atop n\equiv \ell \pmod q}S(n), \end{align*} where S(n) denotes the number of non-isomorphic finite semisimple rings with n elements.