{"title":"地中海贫血导致骨质疏松","authors":"E. Voskaridou, M. Dimopoulou, E. Terpos","doi":"10.4081/THAL.2018.7487","DOIUrl":null,"url":null,"abstract":"Osteoporosis is a prominent cause of morbidity in patients with thalassaemia major (TM) with a complex pathophysiology. Patients with TM and osteoporosis have elevated markers of bone resorption. This increased osteoclast activity seems to be at least partially due to an imbalance in the receptor–activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) system, which is of great importance for the regulation of osteoclast differentiation and function. Denosumab is a fully human monoclonal antibody that binds to RANKL and thereby inhibits the activation of osteoclasts by RANKL. By blocking RANKL, denosumab inhibits osteoclast formation, function and survival, thereby decreasing bone resorption and increasing bone mass in postmenopausal women and patients with thalassaemia-induced osteoporosis.","PeriodicalId":22261,"journal":{"name":"Thalassemia Reports","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4081/THAL.2018.7487","citationCount":"2","resultStr":"{\"title\":\"Osteoporosis in thalassaemia\",\"authors\":\"E. Voskaridou, M. Dimopoulou, E. Terpos\",\"doi\":\"10.4081/THAL.2018.7487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Osteoporosis is a prominent cause of morbidity in patients with thalassaemia major (TM) with a complex pathophysiology. Patients with TM and osteoporosis have elevated markers of bone resorption. This increased osteoclast activity seems to be at least partially due to an imbalance in the receptor–activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) system, which is of great importance for the regulation of osteoclast differentiation and function. Denosumab is a fully human monoclonal antibody that binds to RANKL and thereby inhibits the activation of osteoclasts by RANKL. By blocking RANKL, denosumab inhibits osteoclast formation, function and survival, thereby decreasing bone resorption and increasing bone mass in postmenopausal women and patients with thalassaemia-induced osteoporosis.\",\"PeriodicalId\":22261,\"journal\":{\"name\":\"Thalassemia Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4081/THAL.2018.7487\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thalassemia Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4081/THAL.2018.7487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thalassemia Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/THAL.2018.7487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Osteoporosis is a prominent cause of morbidity in patients with thalassaemia major (TM) with a complex pathophysiology. Patients with TM and osteoporosis have elevated markers of bone resorption. This increased osteoclast activity seems to be at least partially due to an imbalance in the receptor–activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) system, which is of great importance for the regulation of osteoclast differentiation and function. Denosumab is a fully human monoclonal antibody that binds to RANKL and thereby inhibits the activation of osteoclasts by RANKL. By blocking RANKL, denosumab inhibits osteoclast formation, function and survival, thereby decreasing bone resorption and increasing bone mass in postmenopausal women and patients with thalassaemia-induced osteoporosis.