图上紧化构形的同调表示应用于𝓜2,n

IF 0.7 4区 数学 Q2 MATHEMATICS
C. Bibby, M. Chan, Nir Gadish, Claudia He Yun
{"title":"图上紧化构形的同调表示应用于𝓜2,n","authors":"C. Bibby, M. Chan, Nir Gadish, Claudia He Yun","doi":"10.1080/10586458.2023.2209749","DOIUrl":null,"url":null,"abstract":". We obtain new calculations of the top weight rational cohomology of the moduli spaces M 2 ,n , equivalently the rational homology of the tropical moduli spaces ∆ 2 ,n , as a representation of S n . These calculations are achieved fully for all n ≤ 10, and partially—for specific irreducible representations of S n —for n ≤ 22. We also present conjectures, verified up to n = 22, for the multiplicities of the irreducible representations std n and std n ⊗ sgn n . We achieve our calculations via a comparison with the homology of compactified configuration spaces of graphs. These homology groups are equipped with commuting actions of a symmetric group and the outer automorphism group of a free group. In this paper, we con-struct an efficient free resolution for these homology representations. Using the Peter-Weyl Theorem for symmetric groups, we consider irreducible representations individually, vastly simplifying the calculation of these homology representations from the free resolution.","PeriodicalId":50464,"journal":{"name":"Experimental Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Homology Representations of Compactified Configurations on Graphs Applied to 𝓜2,n\",\"authors\":\"C. Bibby, M. Chan, Nir Gadish, Claudia He Yun\",\"doi\":\"10.1080/10586458.2023.2209749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We obtain new calculations of the top weight rational cohomology of the moduli spaces M 2 ,n , equivalently the rational homology of the tropical moduli spaces ∆ 2 ,n , as a representation of S n . These calculations are achieved fully for all n ≤ 10, and partially—for specific irreducible representations of S n —for n ≤ 22. We also present conjectures, verified up to n = 22, for the multiplicities of the irreducible representations std n and std n ⊗ sgn n . We achieve our calculations via a comparison with the homology of compactified configuration spaces of graphs. These homology groups are equipped with commuting actions of a symmetric group and the outer automorphism group of a free group. In this paper, we con-struct an efficient free resolution for these homology representations. Using the Peter-Weyl Theorem for symmetric groups, we consider irreducible representations individually, vastly simplifying the calculation of these homology representations from the free resolution.\",\"PeriodicalId\":50464,\"journal\":{\"name\":\"Experimental Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10586458.2023.2209749\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10586458.2023.2209749","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

.我们获得了模空间M2,n的顶权有理上同调的新计算,等价于热带模空间∆2,n的有理同调,作为S n的表示。对于所有n≤10,这些计算都是完全实现的,对于S n的特定不可约表示,对于n≤22,这些计算是部分实现的。我们还提出了关于不可约表示std n和std n⊗sgn n的乘法性的猜想,验证到n=22。我们通过与图的紧致配置空间的同源性进行比较来实现我们的计算。这些同调群具有对称群和自由群的外自同构群的交换作用。在本文中,我们为这些同源性表示构造了一个有效的自由分辨率。使用对称群的Peter Weyl定理,我们分别考虑不可约表示,极大地简化了从自由分辨率计算这些同调表示的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homology Representations of Compactified Configurations on Graphs Applied to 𝓜2,n
. We obtain new calculations of the top weight rational cohomology of the moduli spaces M 2 ,n , equivalently the rational homology of the tropical moduli spaces ∆ 2 ,n , as a representation of S n . These calculations are achieved fully for all n ≤ 10, and partially—for specific irreducible representations of S n —for n ≤ 22. We also present conjectures, verified up to n = 22, for the multiplicities of the irreducible representations std n and std n ⊗ sgn n . We achieve our calculations via a comparison with the homology of compactified configuration spaces of graphs. These homology groups are equipped with commuting actions of a symmetric group and the outer automorphism group of a free group. In this paper, we con-struct an efficient free resolution for these homology representations. Using the Peter-Weyl Theorem for symmetric groups, we consider irreducible representations individually, vastly simplifying the calculation of these homology representations from the free resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Mathematics
Experimental Mathematics 数学-数学
CiteScore
1.70
自引率
0.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: Experimental Mathematics publishes original papers featuring formal results inspired by experimentation, conjectures suggested by experiments, and data supporting significant hypotheses. Experiment has always been, and increasingly is, an important method of mathematical discovery. (Gauss declared that his way of arriving at mathematical truths was "through systematic experimentation.") Yet this tends to be concealed by the tradition of presenting only elegant, fully developed, and rigorous results. Experimental Mathematics was founded in the belief that theory and experiment feed on each other, and that the mathematical community stands to benefit from a more complete exposure to the experimental process. The early sharing of insights increases the possibility that they will lead to theorems: An interesting conjecture is often formulated by a researcher who lacks the techniques to formalize a proof, while those who have the techniques at their fingertips have been looking elsewhere. Even when the person who had the initial insight goes on to find a proof, a discussion of the heuristic process can be of help, or at least of interest, to other researchers. There is value not only in the discovery itself, but also in the road that leads to it.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信