{"title":"用于分离有毒偶氮染料的磁性CaFe2O4-CeO2纳米复合材料的简单合成及其光催化性能研究","authors":"Fatemeh Seidi, K. Hedayati","doi":"10.22052/JNS.2020.03.006","DOIUrl":null,"url":null,"abstract":"At the first step calcium ferrite nanostructures were synthesized via a facile precipitation method in the presence of green and compatible capping agent such as starch, poly vinyl pyrrolidone and glucose in solvent of water. Then cerium oxide nanoparticles and CaFe2O4-CeO2 nanocomposites was made by a fast chemical procedure. The effect of temperature in nanoparticles and nanocomposites concentration and precipitating agent on the morphology and particle size of the products was investigated. The prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. Also the crystalline size of nanoparticles was calculated by Debye-Scherrer formula. Vibrating sample magnetometer (VSM) shows the ferromagnetic property of the ferrite nanostructures. The photocatalytic behaviour of CaFe2O4-CeO2 nanocomposites was evaluated using the degradation of three azo dyes (acid black, acid violet and acid blue) under ultraviolet light irradiation. The results introduce a nanocomposite with applicable magnetic and photocatalytic performance.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"497-508"},"PeriodicalIF":1.4000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A facile synthesis and study of photocatalytic properties of magnetic CaFe2O4-CeO2 nanocomposites applicable for separation of toxic azo dyes\",\"authors\":\"Fatemeh Seidi, K. Hedayati\",\"doi\":\"10.22052/JNS.2020.03.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At the first step calcium ferrite nanostructures were synthesized via a facile precipitation method in the presence of green and compatible capping agent such as starch, poly vinyl pyrrolidone and glucose in solvent of water. Then cerium oxide nanoparticles and CaFe2O4-CeO2 nanocomposites was made by a fast chemical procedure. The effect of temperature in nanoparticles and nanocomposites concentration and precipitating agent on the morphology and particle size of the products was investigated. The prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. Also the crystalline size of nanoparticles was calculated by Debye-Scherrer formula. Vibrating sample magnetometer (VSM) shows the ferromagnetic property of the ferrite nanostructures. The photocatalytic behaviour of CaFe2O4-CeO2 nanocomposites was evaluated using the degradation of three azo dyes (acid black, acid violet and acid blue) under ultraviolet light irradiation. The results introduce a nanocomposite with applicable magnetic and photocatalytic performance.\",\"PeriodicalId\":16523,\"journal\":{\"name\":\"Journal of Nanostructures\",\"volume\":\"10 1\",\"pages\":\"497-508\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/JNS.2020.03.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2020.03.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
A facile synthesis and study of photocatalytic properties of magnetic CaFe2O4-CeO2 nanocomposites applicable for separation of toxic azo dyes
At the first step calcium ferrite nanostructures were synthesized via a facile precipitation method in the presence of green and compatible capping agent such as starch, poly vinyl pyrrolidone and glucose in solvent of water. Then cerium oxide nanoparticles and CaFe2O4-CeO2 nanocomposites was made by a fast chemical procedure. The effect of temperature in nanoparticles and nanocomposites concentration and precipitating agent on the morphology and particle size of the products was investigated. The prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. Also the crystalline size of nanoparticles was calculated by Debye-Scherrer formula. Vibrating sample magnetometer (VSM) shows the ferromagnetic property of the ferrite nanostructures. The photocatalytic behaviour of CaFe2O4-CeO2 nanocomposites was evaluated using the degradation of three azo dyes (acid black, acid violet and acid blue) under ultraviolet light irradiation. The results introduce a nanocomposite with applicable magnetic and photocatalytic performance.
期刊介绍:
Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.