机器学习和特征选择对2型糖尿病风险预测的影响

Päivi Riihimaa
{"title":"机器学习和特征选择对2型糖尿病风险预测的影响","authors":"Päivi Riihimaa","doi":"10.21037/jmai-20-4","DOIUrl":null,"url":null,"abstract":"This survey summarizes the state of the art for type 2 diabetes mellitus (T2DM) prediction and compares the prediction accuracies obtained by conventional statistical regression and machine learning methods, including deep learning. The impact of feature selection and inclusion of clinical and genomic data on T2DM risk prediction accuracy is also reviewed. The results show that there is a tendency that machine learning algorithms outperform logistic regression in the accuracy of T2DM prediction. Inclusion of clinical data and biomarkers to the core feature set improves accuracy, while incorporating genetic markers in the prediction model is still challenging, due to dimensionality problem and the genetic heterogeneity of T2DM.","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21037/jmai-20-4","citationCount":"4","resultStr":"{\"title\":\"Impact of machine learning and feature selection on type 2 diabetes risk prediction\",\"authors\":\"Päivi Riihimaa\",\"doi\":\"10.21037/jmai-20-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This survey summarizes the state of the art for type 2 diabetes mellitus (T2DM) prediction and compares the prediction accuracies obtained by conventional statistical regression and machine learning methods, including deep learning. The impact of feature selection and inclusion of clinical and genomic data on T2DM risk prediction accuracy is also reviewed. The results show that there is a tendency that machine learning algorithms outperform logistic regression in the accuracy of T2DM prediction. Inclusion of clinical data and biomarkers to the core feature set improves accuracy, while incorporating genetic markers in the prediction model is still challenging, due to dimensionality problem and the genetic heterogeneity of T2DM.\",\"PeriodicalId\":73815,\"journal\":{\"name\":\"Journal of medical artificial intelligence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.21037/jmai-20-4\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of medical artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21037/jmai-20-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/jmai-20-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究总结了2型糖尿病(T2DM)预测的最新进展,并比较了传统统计回归和机器学习方法(包括深度学习)的预测精度。本文还回顾了特征选择和纳入临床和基因组数据对T2DM风险预测准确性的影响。结果表明,机器学习算法在预测T2DM的准确性方面有优于逻辑回归的趋势。将临床数据和生物标记物纳入核心特征集可以提高准确性,但由于维度问题和2型糖尿病的遗传异质性,将遗传标记物纳入预测模型仍然具有挑战性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of machine learning and feature selection on type 2 diabetes risk prediction
This survey summarizes the state of the art for type 2 diabetes mellitus (T2DM) prediction and compares the prediction accuracies obtained by conventional statistical regression and machine learning methods, including deep learning. The impact of feature selection and inclusion of clinical and genomic data on T2DM risk prediction accuracy is also reviewed. The results show that there is a tendency that machine learning algorithms outperform logistic regression in the accuracy of T2DM prediction. Inclusion of clinical data and biomarkers to the core feature set improves accuracy, while incorporating genetic markers in the prediction model is still challenging, due to dimensionality problem and the genetic heterogeneity of T2DM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信