与非交换变量相关的C * -代数表示的世界分解

IF 0.7 4区 数学 Q2 MATHEMATICS
Gelu Popescu
{"title":"与非交换变量相关的C * -代数表示的世界分解","authors":"Gelu Popescu","doi":"10.7900/jot.2020jun29.2289","DOIUrl":null,"url":null,"abstract":"Given a set Q of polynomials in noncommutative indeterminates Z1,…,Zn and a regular domain Dmp(H)⊂B(H)n, m,n∈N, associated with a positive regular polynomial p∈C⟨Z1,…,Zn⟩, we consider the variety VQ(H):={X=(X1,…,Xn)∈Dmp(H):g(X)=0 for all g∈Q}. Each variety VQ(H) admits a {\\it universal model} B=(B1,…,Bn). The main goal of the paper is to study the structure of the ∗-representations of the C∗-algebra C∗(VQ) generated by B1,…,Bn and the identity.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Wold decompositions for representations of C∗-algebras associated with noncommutative varieties\",\"authors\":\"Gelu Popescu\",\"doi\":\"10.7900/jot.2020jun29.2289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a set Q of polynomials in noncommutative indeterminates Z1,…,Zn and a regular domain Dmp(H)⊂B(H)n, m,n∈N, associated with a positive regular polynomial p∈C⟨Z1,…,Zn⟩, we consider the variety VQ(H):={X=(X1,…,Xn)∈Dmp(H):g(X)=0 for all g∈Q}. Each variety VQ(H) admits a {\\\\it universal model} B=(B1,…,Bn). The main goal of the paper is to study the structure of the ∗-representations of the C∗-algebra C∗(VQ) generated by B1,…,Bn and the identity.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2020jun29.2289\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2020jun29.2289","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

给定非对易不确定性Z1,…,Zn中的一组多项式Q和一个正则域Dmp(H)⊂B(H)n,m,n∈n,与一个正正则多项式p∈C⟨Z1,..,Zn⟩相关联,我们考虑所有g∈Q}的变量VQ(H):={X=(X1,…,Xn)∈Dmp(H):g(X)=0。每个变种VQ(H)都允许一个{\ it通用模型}B=(B1,…,Bn)。本文的主要目的是研究由B1,…,Bn和恒等式生成的C*-代数C*(VQ)的*-表示的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wold decompositions for representations of C∗-algebras associated with noncommutative varieties
Given a set Q of polynomials in noncommutative indeterminates Z1,…,Zn and a regular domain Dmp(H)⊂B(H)n, m,n∈N, associated with a positive regular polynomial p∈C⟨Z1,…,Zn⟩, we consider the variety VQ(H):={X=(X1,…,Xn)∈Dmp(H):g(X)=0 for all g∈Q}. Each variety VQ(H) admits a {\it universal model} B=(B1,…,Bn). The main goal of the paper is to study the structure of the ∗-representations of the C∗-algebra C∗(VQ) generated by B1,…,Bn and the identity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信