一个具有正特征的上同调非贝利亚Hodge定理

IF 1.2 1区 数学 Q1 MATHEMATICS
M. A. Cataldo, Siqing Zhang
{"title":"一个具有正特征的上同调非贝利亚Hodge定理","authors":"M. A. Cataldo, Siqing Zhang","doi":"10.14231/ag-2022-018","DOIUrl":null,"url":null,"abstract":"We start with a curve over an algebraically closed ground field of positive characteristic p > 0. By using specialization in cohomology techniques, under suitable natural coprimality conditions, we prove a cohomological Simpson Correspondence between the moduli space of Higgs bundles and the one of connections on the curve. We also prove a new p-multiplicative periodicity concerning the cohomology rings of Dolbeault moduli spaces of degrees differing by a factor of p. By coupling this p-periodicity in characteristic p with lifting/specialization techniques in mixed characteristic, we find, in arbitrary characteristic, cohomology ring isomorphisms between the cohomology rings of Dolbeault moduli spaces for different degrees coprime to the rank. It is interesting that this last result is proved as follows: we prove a weaker version in positive characteristic; we lift and strengthen the weaker version to the result in characteristic zero; finally, we specialize the result to positive characteristic. The moduli spaces we work with admit certain natural morphisms (Hitchin, de Rham-Hitchin, Hodge-Hitchin), and all the cohomology ring isomorphisms we find are filtered isomorphisms for the resulting perverse Leray filtrations.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A cohomological nonabelian Hodge Theorem in positive characteristic\",\"authors\":\"M. A. Cataldo, Siqing Zhang\",\"doi\":\"10.14231/ag-2022-018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We start with a curve over an algebraically closed ground field of positive characteristic p > 0. By using specialization in cohomology techniques, under suitable natural coprimality conditions, we prove a cohomological Simpson Correspondence between the moduli space of Higgs bundles and the one of connections on the curve. We also prove a new p-multiplicative periodicity concerning the cohomology rings of Dolbeault moduli spaces of degrees differing by a factor of p. By coupling this p-periodicity in characteristic p with lifting/specialization techniques in mixed characteristic, we find, in arbitrary characteristic, cohomology ring isomorphisms between the cohomology rings of Dolbeault moduli spaces for different degrees coprime to the rank. It is interesting that this last result is proved as follows: we prove a weaker version in positive characteristic; we lift and strengthen the weaker version to the result in characteristic zero; finally, we specialize the result to positive characteristic. The moduli spaces we work with admit certain natural morphisms (Hitchin, de Rham-Hitchin, Hodge-Hitchin), and all the cohomology ring isomorphisms we find are filtered isomorphisms for the resulting perverse Leray filtrations.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2022-018\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2022-018","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

我们从正特征为p >0 0的代数闭合地面场上的曲线开始。利用上同调技术的专门化,在适当的自然共序条件下,证明了希格斯束的模空间与曲线上的连接的模空间之间的上同调辛普森对应关系。我们还证明了阶差为p的Dolbeault模空间的上同环的一个新的p乘周期。通过将特征p上的p周期性与混合特征上的提升/专一化技术耦合,我们发现在任意特征上,不同阶差的Dolbeault模空间的上同环在秩上互素。有趣的是,最后一个结果被证明如下:我们证明了一个弱版本的正特征;我们提升和加强弱版本的结果特征为零;最后,我们将结果归结为正特征。我们处理的模空间承认某些自然同构(Hitchin, de Rham-Hitchin, Hodge-Hitchin),并且我们发现的所有上同环同构都是由此产生的反常Leray滤波的过滤同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A cohomological nonabelian Hodge Theorem in positive characteristic
We start with a curve over an algebraically closed ground field of positive characteristic p > 0. By using specialization in cohomology techniques, under suitable natural coprimality conditions, we prove a cohomological Simpson Correspondence between the moduli space of Higgs bundles and the one of connections on the curve. We also prove a new p-multiplicative periodicity concerning the cohomology rings of Dolbeault moduli spaces of degrees differing by a factor of p. By coupling this p-periodicity in characteristic p with lifting/specialization techniques in mixed characteristic, we find, in arbitrary characteristic, cohomology ring isomorphisms between the cohomology rings of Dolbeault moduli spaces for different degrees coprime to the rank. It is interesting that this last result is proved as follows: we prove a weaker version in positive characteristic; we lift and strengthen the weaker version to the result in characteristic zero; finally, we specialize the result to positive characteristic. The moduli spaces we work with admit certain natural morphisms (Hitchin, de Rham-Hitchin, Hodge-Hitchin), and all the cohomology ring isomorphisms we find are filtered isomorphisms for the resulting perverse Leray filtrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信