墨西哥湾西北部浅半干旱河口的生物地球化学碱度汇

IF 1.7 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Larissa M. Dias, Xinping Hu, Hang Yin
{"title":"墨西哥湾西北部浅半干旱河口的生物地球化学碱度汇","authors":"Larissa M. Dias,&nbsp;Xinping Hu,&nbsp;Hang Yin","doi":"10.1007/s10498-022-09410-z","DOIUrl":null,"url":null,"abstract":"<div><p>Estuarine total alkalinity (TA), which buffers against acidification, is temporally and spatially variable and regulated by complex, interacting hydrologic and biogeochemical processes. During periods of net evaporation (drought), the Mission-Aransas Estuary (MAE) of the northwestern Gulf of Mexico experienced TA losses beyond what can be attributed to calcification. The contribution of sedimentary oxidation of reduced sulfur to the TA loss was examined in this study. Water column samples were collected from five stations within MAE and analyzed for salinity, TA, and calcium ion concentrations. Sediment samples from four of these monitoring stations and one additional station within MAE were collected and incubated between 2018 and 2021. TA, calcium, magnesium, and sulfate ion concentrations were analyzed for these incubations. Production of sulfate along with TA consumption (or production) beyond what can be attributed to calcification (or carbonate dissolution) was observed. These results suggest that oxidation of reduced sulfur consumed TA in MAE during droughts. We estimate that the upper limit of TA consumption due to reduced sulfur oxidation can be as much as 4.60 × 10<sup>8</sup> mol day<sup>−1</sup> in MAE. This biogeochemical TA sink may be present in other similar subtropical, freshwater-starved estuaries around the world.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"29 1","pages":"49 - 71"},"PeriodicalIF":1.7000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10498-022-09410-z.pdf","citationCount":"1","resultStr":"{\"title\":\"A Biogeochemical Alkalinity Sink in a Shallow, Semiarid Estuary of the Northwestern Gulf of Mexico\",\"authors\":\"Larissa M. Dias,&nbsp;Xinping Hu,&nbsp;Hang Yin\",\"doi\":\"10.1007/s10498-022-09410-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Estuarine total alkalinity (TA), which buffers against acidification, is temporally and spatially variable and regulated by complex, interacting hydrologic and biogeochemical processes. During periods of net evaporation (drought), the Mission-Aransas Estuary (MAE) of the northwestern Gulf of Mexico experienced TA losses beyond what can be attributed to calcification. The contribution of sedimentary oxidation of reduced sulfur to the TA loss was examined in this study. Water column samples were collected from five stations within MAE and analyzed for salinity, TA, and calcium ion concentrations. Sediment samples from four of these monitoring stations and one additional station within MAE were collected and incubated between 2018 and 2021. TA, calcium, magnesium, and sulfate ion concentrations were analyzed for these incubations. Production of sulfate along with TA consumption (or production) beyond what can be attributed to calcification (or carbonate dissolution) was observed. These results suggest that oxidation of reduced sulfur consumed TA in MAE during droughts. We estimate that the upper limit of TA consumption due to reduced sulfur oxidation can be as much as 4.60 × 10<sup>8</sup> mol day<sup>−1</sup> in MAE. This biogeochemical TA sink may be present in other similar subtropical, freshwater-starved estuaries around the world.</p></div>\",\"PeriodicalId\":8102,\"journal\":{\"name\":\"Aquatic Geochemistry\",\"volume\":\"29 1\",\"pages\":\"49 - 71\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10498-022-09410-z.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10498-022-09410-z\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10498-022-09410-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

河口总碱度(TA)具有缓冲酸化的作用,是时空可变的,受复杂的、相互作用的水文和生物地球化学过程调节。在净蒸发(干旱)期间,墨西哥湾西北部的Mission-Aransas河口(MAE)经历的TA损失超出了钙化的范围。研究了还原硫的沉积氧化对TA损失的贡献。从MAE的五个站点收集水柱样本,分析盐度、TA和钙离子浓度。从这些监测站中的四个和MAE内的另一个监测站收集沉积物样本,并在2018年至2021年期间进行孵育。分析这些孵育过程中TA、钙、镁和硫酸盐离子浓度。硫酸盐的产生与TA的消耗(或生产)超出了可归因于钙化(或碳酸盐溶解)的范围。这些结果表明,在干旱期间,还原性硫的氧化消耗了MAE中的TA。我们估计,在MAE中,由于减少硫氧化而消耗的TA的上限可高达4.60 × 108 mol day - 1。这种生物地球化学TA汇可能存在于世界上其他类似的亚热带淡水匮乏的河口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Biogeochemical Alkalinity Sink in a Shallow, Semiarid Estuary of the Northwestern Gulf of Mexico

A Biogeochemical Alkalinity Sink in a Shallow, Semiarid Estuary of the Northwestern Gulf of Mexico

Estuarine total alkalinity (TA), which buffers against acidification, is temporally and spatially variable and regulated by complex, interacting hydrologic and biogeochemical processes. During periods of net evaporation (drought), the Mission-Aransas Estuary (MAE) of the northwestern Gulf of Mexico experienced TA losses beyond what can be attributed to calcification. The contribution of sedimentary oxidation of reduced sulfur to the TA loss was examined in this study. Water column samples were collected from five stations within MAE and analyzed for salinity, TA, and calcium ion concentrations. Sediment samples from four of these monitoring stations and one additional station within MAE were collected and incubated between 2018 and 2021. TA, calcium, magnesium, and sulfate ion concentrations were analyzed for these incubations. Production of sulfate along with TA consumption (or production) beyond what can be attributed to calcification (or carbonate dissolution) was observed. These results suggest that oxidation of reduced sulfur consumed TA in MAE during droughts. We estimate that the upper limit of TA consumption due to reduced sulfur oxidation can be as much as 4.60 × 108 mol day−1 in MAE. This biogeochemical TA sink may be present in other similar subtropical, freshwater-starved estuaries around the world.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Geochemistry
Aquatic Geochemistry 地学-地球化学与地球物理
CiteScore
4.30
自引率
0.00%
发文量
6
审稿时长
1 months
期刊介绍: We publish original studies relating to the geochemistry of natural waters and their interactions with rocks and minerals under near Earth-surface conditions. Coverage includes theoretical, experimental, and modeling papers dealing with this subject area, as well as papers presenting observations of natural systems that stress major processes. The journal also presents `letter''-type papers for rapid publication and a limited number of review-type papers on topics of particularly broad interest or current major controversy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信