{"title":"Ricci对李群上的$G_2$-结构进行了极值缩紧","authors":"J. Lauret, Marina Nicolini","doi":"10.4310/cag.2022.v30.n6.a5","DOIUrl":null,"url":null,"abstract":"Only two examples of extremally Ricci pinched G2-structures can be found in the literature and they are both homogeneous. We study in this paper the existence and structure of such very special closed G2-structures on Lie groups. Strong structural conditions on the Lie algebra are proved to hold. As an application, we obtain three new examples of extremally Ricci pinched G2-structures and that they are all necessarily steady Laplacian solitons. The deformation and rigidity of such structures are also studied.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Extremally Ricci pinched $G_2$-structures on Lie groups\",\"authors\":\"J. Lauret, Marina Nicolini\",\"doi\":\"10.4310/cag.2022.v30.n6.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Only two examples of extremally Ricci pinched G2-structures can be found in the literature and they are both homogeneous. We study in this paper the existence and structure of such very special closed G2-structures on Lie groups. Strong structural conditions on the Lie algebra are proved to hold. As an application, we obtain three new examples of extremally Ricci pinched G2-structures and that they are all necessarily steady Laplacian solitons. The deformation and rigidity of such structures are also studied.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2022.v30.n6.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2022.v30.n6.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extremally Ricci pinched $G_2$-structures on Lie groups
Only two examples of extremally Ricci pinched G2-structures can be found in the literature and they are both homogeneous. We study in this paper the existence and structure of such very special closed G2-structures on Lie groups. Strong structural conditions on the Lie algebra are proved to hold. As an application, we obtain three new examples of extremally Ricci pinched G2-structures and that they are all necessarily steady Laplacian solitons. The deformation and rigidity of such structures are also studied.