F(x,z)=2x4−z3的高斯整数零点的确定

IF 0.5 Q3 MATHEMATICS
S. Ismail, K. A. Atan, D. Sejas-Viscarra, Z. Eshkuvatov
{"title":"F(x,z)=2x4−z3的高斯整数零点的确定","authors":"S. Ismail, K. A. Atan, D. Sejas-Viscarra, Z. Eshkuvatov","doi":"10.47836/mjms.16.2.09","DOIUrl":null,"url":null,"abstract":"In this paper the zeroes of the polynomial F(x,z)=2x4−z3 in Gaussian integers Z[i] are determined, a problem equivalent to finding the solutions of the Diophatine equation x4+y4=z3 in Z[i], with a focus on the case x=y. We start by using an analytical method that examines the real and imaginary parts of the equation F(x,z)=0. This analysis sheds light on the general algebraic behavior of the polynomial F(x,z) itself and its zeroes. This in turn allows us a deeper understanding of the different cases and conditions that give rise to trivial and non-trivial solutions to F(x,z)=0, and those that lead to inconsistencies. This paper concludes with a general formulation of the solutions to F(x,z)=0 in Gaussian integers. Results obtained in this work show the existence of infinitely many non-trivial zeroes for F(x,z)=2x4−z3 under the general form x=(1+i)η3 and c=−2η4 for η∈Z[i].","PeriodicalId":43645,"journal":{"name":"Malaysian Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determination of Gaussian Integer Zeroes of F(x,z)=2x4−z3\",\"authors\":\"S. Ismail, K. A. Atan, D. Sejas-Viscarra, Z. Eshkuvatov\",\"doi\":\"10.47836/mjms.16.2.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the zeroes of the polynomial F(x,z)=2x4−z3 in Gaussian integers Z[i] are determined, a problem equivalent to finding the solutions of the Diophatine equation x4+y4=z3 in Z[i], with a focus on the case x=y. We start by using an analytical method that examines the real and imaginary parts of the equation F(x,z)=0. This analysis sheds light on the general algebraic behavior of the polynomial F(x,z) itself and its zeroes. This in turn allows us a deeper understanding of the different cases and conditions that give rise to trivial and non-trivial solutions to F(x,z)=0, and those that lead to inconsistencies. This paper concludes with a general formulation of the solutions to F(x,z)=0 in Gaussian integers. Results obtained in this work show the existence of infinitely many non-trivial zeroes for F(x,z)=2x4−z3 under the general form x=(1+i)η3 and c=−2η4 for η∈Z[i].\",\"PeriodicalId\":43645,\"journal\":{\"name\":\"Malaysian Journal of Mathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/mjms.16.2.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/mjms.16.2.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,确定了高斯整数z[i]中多项式F(x,z)=2x4−z3的零点,这是一个等价于在z[i]上求Diopatine方程x4+y4=z3的解的问题,重点讨论了x=y的情况。我们首先使用一种分析方法来检验方程F(x,z)=0的实部和虚部。该分析揭示了多项式F(x,z)本身及其零的一般代数行为。这反过来又使我们能够更深入地理解导致F(x,z)=0的平凡和非平凡解的不同情况和条件,以及导致不一致的情况和条件。本文最后给出了F(x,z)=0在高斯整数中解的一般公式。本文的结果表明,在一般形式x=(1+i)η3下,F(x,z)=2x4−z3存在无穷多个非平凡零,η∈z[i]存在c=−2η4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of Gaussian Integer Zeroes of F(x,z)=2x4−z3
In this paper the zeroes of the polynomial F(x,z)=2x4−z3 in Gaussian integers Z[i] are determined, a problem equivalent to finding the solutions of the Diophatine equation x4+y4=z3 in Z[i], with a focus on the case x=y. We start by using an analytical method that examines the real and imaginary parts of the equation F(x,z)=0. This analysis sheds light on the general algebraic behavior of the polynomial F(x,z) itself and its zeroes. This in turn allows us a deeper understanding of the different cases and conditions that give rise to trivial and non-trivial solutions to F(x,z)=0, and those that lead to inconsistencies. This paper concludes with a general formulation of the solutions to F(x,z)=0 in Gaussian integers. Results obtained in this work show the existence of infinitely many non-trivial zeroes for F(x,z)=2x4−z3 under the general form x=(1+i)η3 and c=−2η4 for η∈Z[i].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
20.00%
发文量
0
期刊介绍: The Research Bulletin of Institute for Mathematical Research (MathDigest) publishes light expository articles on mathematical sciences and research abstracts. It is published twice yearly by the Institute for Mathematical Research, Universiti Putra Malaysia. MathDigest is targeted at mathematically informed general readers on research of interest to the Institute. Articles are sought by invitation to the members, visitors and friends of the Institute. MathDigest also includes abstracts of thesis by postgraduate students of the Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信