D. McLeish, S. Johnston, R. Friedman, J. Mortensen
{"title":"不列颠哥伦比亚省东北部阿莱碳酸盐岩杂岩的地层学和U-Pb锆石-钛矿地质年代学:加拿大科迪勒拉前陆带Antler年龄造山的证据","authors":"D. McLeish, S. Johnston, R. Friedman, J. Mortensen","doi":"10.12789/GEOCANJ.2020.47.165","DOIUrl":null,"url":null,"abstract":"The tectonic significance and age of carbonatite intrusions in the central Foreland Belt of the Canadian Cordillera are poorly constrained. Recent work has demonstrated that one of these carbonatite intrusions, the Aley carbonatite, was emplaced as a syn-kinematic sill, coeval with a major nappe-forming tectonic event. Determining the age of the Aley carbonatite thus provides a means of directly dating syn-tectonic magmatism. Attempts at dating carbonatite units failed due to low U–Pb content in sampled zircon; however, a U–Pb titanite age of 365.9 ± 2.1 Ma was obtained from the Ospika pipe, an ultramafic diatreme spatially and genetically related to the carbonatite. This U–Pb titanite age is further supported by respective 40Ar/39Ar phlogopite ages of 359.4 ± 3.4 Ma and 353.3 ± 3.6 Ma for the pipe and a spatially associated lamprophyre dyke. We interpret the Late Devonian U–Pb titanite age of the Ospikapipe to be the minimum possible age of the carbonatite and syn-magmatic nappe-forming tectonic event. The maximum possible age of the carbonatite is constrained by the Early Devonian age of the Road River Group, the youngest strata intruded by carbonatite dykes and involved in the nappe-forming event. Our dating results for the Aley carbonatite closely correlate with U–Pb zircon and perovskite ages obtained for the Ice River carbonatite complex in the central Foreland Belt of the southern Canadian Cordillera, and support the interpretation of carbonatite intrusions of the western Foreland Belt as genetically linked components of an alkaline-carbonatitic magmatic province. Structural, stratigraphic, and geochronological data from the Aley area indicate that deformation was similar in style to, and coeval with, structures attributable to the Antler orogeny, and are consistent with the Antler orogen having extended the length of the Cordilleran margin from the southern United States to Alaska.","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Stratigraphy and U–Pb Zircon–Titanite Geochronology of the Aley Carbonatite Complex, Northeastern British Columbia: Evidence for Antler-Aged Orogenesis in the Foreland Belt of the Canadian Cordillera\",\"authors\":\"D. McLeish, S. Johnston, R. Friedman, J. Mortensen\",\"doi\":\"10.12789/GEOCANJ.2020.47.165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tectonic significance and age of carbonatite intrusions in the central Foreland Belt of the Canadian Cordillera are poorly constrained. Recent work has demonstrated that one of these carbonatite intrusions, the Aley carbonatite, was emplaced as a syn-kinematic sill, coeval with a major nappe-forming tectonic event. Determining the age of the Aley carbonatite thus provides a means of directly dating syn-tectonic magmatism. Attempts at dating carbonatite units failed due to low U–Pb content in sampled zircon; however, a U–Pb titanite age of 365.9 ± 2.1 Ma was obtained from the Ospika pipe, an ultramafic diatreme spatially and genetically related to the carbonatite. This U–Pb titanite age is further supported by respective 40Ar/39Ar phlogopite ages of 359.4 ± 3.4 Ma and 353.3 ± 3.6 Ma for the pipe and a spatially associated lamprophyre dyke. We interpret the Late Devonian U–Pb titanite age of the Ospikapipe to be the minimum possible age of the carbonatite and syn-magmatic nappe-forming tectonic event. The maximum possible age of the carbonatite is constrained by the Early Devonian age of the Road River Group, the youngest strata intruded by carbonatite dykes and involved in the nappe-forming event. Our dating results for the Aley carbonatite closely correlate with U–Pb zircon and perovskite ages obtained for the Ice River carbonatite complex in the central Foreland Belt of the southern Canadian Cordillera, and support the interpretation of carbonatite intrusions of the western Foreland Belt as genetically linked components of an alkaline-carbonatitic magmatic province. Structural, stratigraphic, and geochronological data from the Aley area indicate that deformation was similar in style to, and coeval with, structures attributable to the Antler orogeny, and are consistent with the Antler orogen having extended the length of the Cordilleran margin from the southern United States to Alaska.\",\"PeriodicalId\":55106,\"journal\":{\"name\":\"Geoscience Canada\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience Canada\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.12789/GEOCANJ.2020.47.165\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Canada","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.12789/GEOCANJ.2020.47.165","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Stratigraphy and U–Pb Zircon–Titanite Geochronology of the Aley Carbonatite Complex, Northeastern British Columbia: Evidence for Antler-Aged Orogenesis in the Foreland Belt of the Canadian Cordillera
The tectonic significance and age of carbonatite intrusions in the central Foreland Belt of the Canadian Cordillera are poorly constrained. Recent work has demonstrated that one of these carbonatite intrusions, the Aley carbonatite, was emplaced as a syn-kinematic sill, coeval with a major nappe-forming tectonic event. Determining the age of the Aley carbonatite thus provides a means of directly dating syn-tectonic magmatism. Attempts at dating carbonatite units failed due to low U–Pb content in sampled zircon; however, a U–Pb titanite age of 365.9 ± 2.1 Ma was obtained from the Ospika pipe, an ultramafic diatreme spatially and genetically related to the carbonatite. This U–Pb titanite age is further supported by respective 40Ar/39Ar phlogopite ages of 359.4 ± 3.4 Ma and 353.3 ± 3.6 Ma for the pipe and a spatially associated lamprophyre dyke. We interpret the Late Devonian U–Pb titanite age of the Ospikapipe to be the minimum possible age of the carbonatite and syn-magmatic nappe-forming tectonic event. The maximum possible age of the carbonatite is constrained by the Early Devonian age of the Road River Group, the youngest strata intruded by carbonatite dykes and involved in the nappe-forming event. Our dating results for the Aley carbonatite closely correlate with U–Pb zircon and perovskite ages obtained for the Ice River carbonatite complex in the central Foreland Belt of the southern Canadian Cordillera, and support the interpretation of carbonatite intrusions of the western Foreland Belt as genetically linked components of an alkaline-carbonatitic magmatic province. Structural, stratigraphic, and geochronological data from the Aley area indicate that deformation was similar in style to, and coeval with, structures attributable to the Antler orogeny, and are consistent with the Antler orogen having extended the length of the Cordilleran margin from the southern United States to Alaska.
期刊介绍:
Established in 1974, Geoscience Canada is the main technical publication of the Geological Association of Canada (GAC). We are a quarterly journal that emphasizes diversity of material, and also the presentation of informative technical articles that can be understood not only by specialist research workers, but by non-specialists in other branches of the Earth Sciences. We aim to be a journal that you want to read, and which will leave you better informed, rather than more confused.