造纸厂制浆过程的非线性最优控制方法

IF 2.5 Q2 ENGINEERING, INDUSTRIAL
G. Rigatos, M. Abbaszadeh, G. Cuccurullo, P. Siano
{"title":"造纸厂制浆过程的非线性最优控制方法","authors":"G. Rigatos,&nbsp;M. Abbaszadeh,&nbsp;G. Cuccurullo,&nbsp;P. Siano","doi":"10.1049/cim2.12017","DOIUrl":null,"url":null,"abstract":"<p>The mechanical pulping process is non-linear and multivariable. To solve the related control problem, the dynamic model of the pulping process undergoes first approximate linearization around a temporary operating point which is updated at each iteration of the control algorithm. The linearization process relies on first-order Taylor series expansion and on the computation of the Jacobian matrices of the state-space model of the pulping process. For the approximately linearized description of the pulping process, a stabilizing H-infinity feedback controller is designed. To compute the controller's feedback gains, an algebraic Riccati equation is solved at each time-step of the control method. The stability properties of the control scheme are proven through Lyapunov analysis.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"3 2","pages":"161-174"},"PeriodicalIF":2.5000,"publicationDate":"2021-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12017","citationCount":"2","resultStr":"{\"title\":\"A nonlinear optimal control approach for the pulping process of paper mills\",\"authors\":\"G. Rigatos,&nbsp;M. Abbaszadeh,&nbsp;G. Cuccurullo,&nbsp;P. Siano\",\"doi\":\"10.1049/cim2.12017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The mechanical pulping process is non-linear and multivariable. To solve the related control problem, the dynamic model of the pulping process undergoes first approximate linearization around a temporary operating point which is updated at each iteration of the control algorithm. The linearization process relies on first-order Taylor series expansion and on the computation of the Jacobian matrices of the state-space model of the pulping process. For the approximately linearized description of the pulping process, a stabilizing H-infinity feedback controller is designed. To compute the controller's feedback gains, an algebraic Riccati equation is solved at each time-step of the control method. The stability properties of the control scheme are proven through Lyapunov analysis.</p>\",\"PeriodicalId\":33286,\"journal\":{\"name\":\"IET Collaborative Intelligent Manufacturing\",\"volume\":\"3 2\",\"pages\":\"161-174\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12017\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Collaborative Intelligent Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 2

摘要

这项研究工作得到了工业自动化/工业系统研究所的资助,资助/奖励号:6065;摘要机械制浆过程是一个非线性、多变量的过程。为了解决相关的控制问题,制浆过程的动态模型首先围绕一个临时工作点进行近似线性化,在控制算法的每次迭代中更新该临时工作点。线性化过程依赖于制浆过程状态空间模型的一阶泰勒级数展开和雅可比矩阵的计算。针对制浆过程的近似线性化描述,设计了稳定的H∞反馈控制器。为了计算控制器的反馈增益,在控制方法的每个时间步解一个代数Riccati方程。通过李雅普诺夫分析证明了该控制方案的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A nonlinear optimal control approach for the pulping process of paper mills

A nonlinear optimal control approach for the pulping process of paper mills

The mechanical pulping process is non-linear and multivariable. To solve the related control problem, the dynamic model of the pulping process undergoes first approximate linearization around a temporary operating point which is updated at each iteration of the control algorithm. The linearization process relies on first-order Taylor series expansion and on the computation of the Jacobian matrices of the state-space model of the pulping process. For the approximately linearized description of the pulping process, a stabilizing H-infinity feedback controller is designed. To compute the controller's feedback gains, an algebraic Riccati equation is solved at each time-step of the control method. The stability properties of the control scheme are proven through Lyapunov analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Collaborative Intelligent Manufacturing
IET Collaborative Intelligent Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
2.40%
发文量
25
审稿时长
20 weeks
期刊介绍: IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly. The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信