四个没有光滑刺的流形

Pub Date : 2021-02-22 DOI:10.4310/mrl.2022.v29.n1.a2
I. Belegradek, Beibei Liu
{"title":"四个没有光滑刺的流形","authors":"I. Belegradek, Beibei Liu","doi":"10.4310/mrl.2022.v29.n1.a2","DOIUrl":null,"url":null,"abstract":"Let $W$ be a compact smooth $4$-manifold that deformation retract to a PL embedded closed surface. One can arrange the embedding to have at most one non-locally-flat point, and near the point the topology of the embedding is encoded in the singularity knot $K$. If $K$ is slice, then $W$ has a smooth spine, i.e., deformation retracts onto a smoothly embedded surface. Using the obstructions from the Heegaard Floer homology and the high-dimensional surgery theory, we show that $W$ has no smooth spines if $K$ is a knot with nonzero Arf invariant, a nontrivial L-space knot, the connected sum of nontrivial L-space knots, or an alternating knot of signature $<-4$. We also discuss examples where the interior of $W$ is negatively curved.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four manifolds with no smooth spines\",\"authors\":\"I. Belegradek, Beibei Liu\",\"doi\":\"10.4310/mrl.2022.v29.n1.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $W$ be a compact smooth $4$-manifold that deformation retract to a PL embedded closed surface. One can arrange the embedding to have at most one non-locally-flat point, and near the point the topology of the embedding is encoded in the singularity knot $K$. If $K$ is slice, then $W$ has a smooth spine, i.e., deformation retracts onto a smoothly embedded surface. Using the obstructions from the Heegaard Floer homology and the high-dimensional surgery theory, we show that $W$ has no smooth spines if $K$ is a knot with nonzero Arf invariant, a nontrivial L-space knot, the connected sum of nontrivial L-space knots, or an alternating knot of signature $<-4$. We also discuss examples where the interior of $W$ is negatively curved.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2022.v29.n1.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2022.v29.n1.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$W$是一个紧凑的光滑$4$流形,其变形缩回到PL嵌入的封闭表面。可以将嵌入安排为最多有一个非局部平坦点,并且在该点附近,嵌入的拓扑结构被编码为奇异结K。如果$K$是切片,则$W$具有光滑的脊柱,即变形收缩到平滑的嵌入表面。利用Heegaard flower同调中的障碍物和高维外科理论,我们证明了如果$K$是具有非零Arf不变量的结、非平凡l空间结、非平凡l空间结的连通和或签名$<-4$的交替结,则$W$没有光滑棘。我们还讨论了W$的内部是负弯曲的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Four manifolds with no smooth spines
Let $W$ be a compact smooth $4$-manifold that deformation retract to a PL embedded closed surface. One can arrange the embedding to have at most one non-locally-flat point, and near the point the topology of the embedding is encoded in the singularity knot $K$. If $K$ is slice, then $W$ has a smooth spine, i.e., deformation retracts onto a smoothly embedded surface. Using the obstructions from the Heegaard Floer homology and the high-dimensional surgery theory, we show that $W$ has no smooth spines if $K$ is a knot with nonzero Arf invariant, a nontrivial L-space knot, the connected sum of nontrivial L-space knots, or an alternating knot of signature $<-4$. We also discuss examples where the interior of $W$ is negatively curved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信