考虑搁浅损伤的船体梁强度研究

IF 0.2 Q4 ENGINEERING, MULTIDISCIPLINARY
M. Alie, R. Adiputra
{"title":"考虑搁浅损伤的船体梁强度研究","authors":"M. Alie, R. Adiputra","doi":"10.7454/MST.V22I2.3355","DOIUrl":null,"url":null,"abstract":"The objective of the present study is to investigate ship hull girder strength as a result of grounding damage upon longitudinal bending. A bulk carrier and tanker are analyzed and Smith’s Method is adopted and implemented in the analysis program. An efficient solution procedure is performed by assuming the cross-section remains plane and the vertical bending moment is applied to the cross section. As a fundamental case, the damage is simply created by removing the elements from the cross section. Welding residual stress, initial imperfections, and crack extensions are not considered. The grounding damage is made by two conditions, namely those are placed at the center part of the cross section and those located at an asymmetric position. To determine the ultimate strength, which includes the progressive collapse behavior of ship hull with damage, the simply supported scenario is imposed to the cross section and hogging and sagging conditions are taken into account. The results obtained for intact and damage conditions by the in-house program are compared with one another to observe the collapse behavior in advance.","PeriodicalId":42980,"journal":{"name":"Makara Journal of Technology","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"INVESTIGATION ON THE SHIP HULL GIRDER STRENGTH WITH GROUNDING DAMAGE\",\"authors\":\"M. Alie, R. Adiputra\",\"doi\":\"10.7454/MST.V22I2.3355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of the present study is to investigate ship hull girder strength as a result of grounding damage upon longitudinal bending. A bulk carrier and tanker are analyzed and Smith’s Method is adopted and implemented in the analysis program. An efficient solution procedure is performed by assuming the cross-section remains plane and the vertical bending moment is applied to the cross section. As a fundamental case, the damage is simply created by removing the elements from the cross section. Welding residual stress, initial imperfections, and crack extensions are not considered. The grounding damage is made by two conditions, namely those are placed at the center part of the cross section and those located at an asymmetric position. To determine the ultimate strength, which includes the progressive collapse behavior of ship hull with damage, the simply supported scenario is imposed to the cross section and hogging and sagging conditions are taken into account. The results obtained for intact and damage conditions by the in-house program are compared with one another to observe the collapse behavior in advance.\",\"PeriodicalId\":42980,\"journal\":{\"name\":\"Makara Journal of Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2018-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Makara Journal of Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7454/MST.V22I2.3355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Makara Journal of Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7454/MST.V22I2.3355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

本研究的目的是研究船体梁在纵向弯曲时因接地损坏而产生的强度。对一艘散货船和油轮进行了分析,并在分析程序中采用和实现了Smith方法。通过假设横截面保持平面并将垂直弯矩施加到横截面,可以执行有效的求解程序。作为一种基本情况,损伤只是通过从横截面上移除元件来产生的。不考虑焊接残余应力、初始缺陷和裂纹扩展。接地损坏是由两种情况造成的,即位于横截面中心部分的情况和位于不对称位置的情况。为了确定极限强度,包括船体在有损伤的情况下的渐进倒塌行为,将简支情景应用于横截面,并考虑了拱起和下垂条件。将内部程序在完整和损坏条件下获得的结果相互比较,以提前观察坍塌行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INVESTIGATION ON THE SHIP HULL GIRDER STRENGTH WITH GROUNDING DAMAGE
The objective of the present study is to investigate ship hull girder strength as a result of grounding damage upon longitudinal bending. A bulk carrier and tanker are analyzed and Smith’s Method is adopted and implemented in the analysis program. An efficient solution procedure is performed by assuming the cross-section remains plane and the vertical bending moment is applied to the cross section. As a fundamental case, the damage is simply created by removing the elements from the cross section. Welding residual stress, initial imperfections, and crack extensions are not considered. The grounding damage is made by two conditions, namely those are placed at the center part of the cross section and those located at an asymmetric position. To determine the ultimate strength, which includes the progressive collapse behavior of ship hull with damage, the simply supported scenario is imposed to the cross section and hogging and sagging conditions are taken into account. The results obtained for intact and damage conditions by the in-house program are compared with one another to observe the collapse behavior in advance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Makara Journal of Technology
Makara Journal of Technology ENGINEERING, MULTIDISCIPLINARY-
自引率
0.00%
发文量
13
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信