Tameem Ahmad, Maksud Ahamad, Sayyed Usman Ahmed, Nesar Ahmad
{"title":"基于词汇和语义相似性特征的短问答评估","authors":"Tameem Ahmad, Maksud Ahamad, Sayyed Usman Ahmed, Nesar Ahmad","doi":"10.1080/09720529.2022.2133245","DOIUrl":null,"url":null,"abstract":"Abstract Evaluation of short answers is a challenging task. As there could be more than one way of expressing the same thing in a sentence by quite different words and phrases, evaluation through computer-based system of Short answers requires natural language understanding. Study has performed comparative analysis for short answer assessment with regression algorithms namely: Support Vector Regression, Linear Regression, Bagging Tree, Boosting Tree, Multilayer Perceptron Regressor, and Random Forest on extracted features. It proposes the combined features that take account of lexical, approximate string matching, and semantic similarity features. An empirical evaluation of feature selection is also done that further improves the results. These combined features achieved improved results as 0.71 & 0.78 for correlation and RMSE values respectively.","PeriodicalId":46563,"journal":{"name":"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY","volume":"25 1","pages":"2057 - 2067"},"PeriodicalIF":1.2000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short question-answers assessment using lexical and semantic similarity based features\",\"authors\":\"Tameem Ahmad, Maksud Ahamad, Sayyed Usman Ahmed, Nesar Ahmad\",\"doi\":\"10.1080/09720529.2022.2133245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Evaluation of short answers is a challenging task. As there could be more than one way of expressing the same thing in a sentence by quite different words and phrases, evaluation through computer-based system of Short answers requires natural language understanding. Study has performed comparative analysis for short answer assessment with regression algorithms namely: Support Vector Regression, Linear Regression, Bagging Tree, Boosting Tree, Multilayer Perceptron Regressor, and Random Forest on extracted features. It proposes the combined features that take account of lexical, approximate string matching, and semantic similarity features. An empirical evaluation of feature selection is also done that further improves the results. These combined features achieved improved results as 0.71 & 0.78 for correlation and RMSE values respectively.\",\"PeriodicalId\":46563,\"journal\":{\"name\":\"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY\",\"volume\":\"25 1\",\"pages\":\"2057 - 2067\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09720529.2022.2133245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09720529.2022.2133245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Short question-answers assessment using lexical and semantic similarity based features
Abstract Evaluation of short answers is a challenging task. As there could be more than one way of expressing the same thing in a sentence by quite different words and phrases, evaluation through computer-based system of Short answers requires natural language understanding. Study has performed comparative analysis for short answer assessment with regression algorithms namely: Support Vector Regression, Linear Regression, Bagging Tree, Boosting Tree, Multilayer Perceptron Regressor, and Random Forest on extracted features. It proposes the combined features that take account of lexical, approximate string matching, and semantic similarity features. An empirical evaluation of feature selection is also done that further improves the results. These combined features achieved improved results as 0.71 & 0.78 for correlation and RMSE values respectively.