作品的场地周界

IF 0.3 Q4 MATHEMATICS, APPLIED
A. Blecher, C. Brennan, A. Knopfmacher
{"title":"作品的场地周界","authors":"A. Blecher, C. Brennan, A. Knopfmacher","doi":"10.1515/dma-2022-0007","DOIUrl":null,"url":null,"abstract":"Abstract Compositions of n are finite sequences of positive integers (σi)i=1k $\\begin{array}{} (\\sigma_i)_{i = 1}^k \\end{array} $ such that σ1+σ2+⋯+σk=n. $$\\begin{array}{} \\sigma_1+\\sigma_2+\\cdots +\\sigma_k = n. \\end{array} $$ We represent a composition of n as a bargraph with area n such that the height of the i-th column of the bargraph equals the size of the i-th part of the composition. We consider the site-perimeter which is the number of nearest-neighbour cells outside the boundary of the polyomino. The generating function that counts the total site-perimeter of compositions is obtained. In addition, we rederive the average site-perimeter of a composition by direct counting. Finally we determine the average site-perimeter of a bargraph with a given semi-perimeter.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"32 1","pages":"75 - 89"},"PeriodicalIF":0.3000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The site-perimeter of compositions\",\"authors\":\"A. Blecher, C. Brennan, A. Knopfmacher\",\"doi\":\"10.1515/dma-2022-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Compositions of n are finite sequences of positive integers (σi)i=1k $\\\\begin{array}{} (\\\\sigma_i)_{i = 1}^k \\\\end{array} $ such that σ1+σ2+⋯+σk=n. $$\\\\begin{array}{} \\\\sigma_1+\\\\sigma_2+\\\\cdots +\\\\sigma_k = n. \\\\end{array} $$ We represent a composition of n as a bargraph with area n such that the height of the i-th column of the bargraph equals the size of the i-th part of the composition. We consider the site-perimeter which is the number of nearest-neighbour cells outside the boundary of the polyomino. The generating function that counts the total site-perimeter of compositions is obtained. In addition, we rederive the average site-perimeter of a composition by direct counting. Finally we determine the average site-perimeter of a bargraph with a given semi-perimeter.\",\"PeriodicalId\":11287,\"journal\":{\"name\":\"Discrete Mathematics and Applications\",\"volume\":\"32 1\",\"pages\":\"75 - 89\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dma-2022-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2022-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

n的组合是正整数(σi)i=1k $\begin{array}{} (\sigma_i)_{i = 1}^k \end{array} $的有限序列,使得σ1+σ2+⋯+σk=n。$$\begin{array}{} \sigma_1+\sigma_2+\cdots +\sigma_k = n. \end{array} $$我们将n的组合表示为面积为n的柱状图,使得柱状图的第i列的高度等于组合的第i部分的大小。我们考虑场地周长,即多聚体边界外最近邻细胞的数量。得到了计算组合物总场地周长的生成函数。此外,我们通过直接计数重新推导出一个组合的平均场地周长。最后,我们确定了具有给定半周长的柱状图的平均点周长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The site-perimeter of compositions
Abstract Compositions of n are finite sequences of positive integers (σi)i=1k $\begin{array}{} (\sigma_i)_{i = 1}^k \end{array} $ such that σ1+σ2+⋯+σk=n. $$\begin{array}{} \sigma_1+\sigma_2+\cdots +\sigma_k = n. \end{array} $$ We represent a composition of n as a bargraph with area n such that the height of the i-th column of the bargraph equals the size of the i-th part of the composition. We consider the site-perimeter which is the number of nearest-neighbour cells outside the boundary of the polyomino. The generating function that counts the total site-perimeter of compositions is obtained. In addition, we rederive the average site-perimeter of a composition by direct counting. Finally we determine the average site-perimeter of a bargraph with a given semi-perimeter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信