紧连通单李群实线性不可约表示矩阵元的Morse数的上估计

IF 0.7 4区 数学 Q2 MATHEMATICS
M. Meshcheryakov
{"title":"紧连通单李群实线性不可约表示矩阵元的Morse数的上估计","authors":"M. Meshcheryakov","doi":"10.1090/spmj/1737","DOIUrl":null,"url":null,"abstract":"The Morse numbers of spaces of matrix elements for real irreducible linear representations of compact connected simple Lie groups are estimate from above in a variety of ways, in terms of the dimension, the Dynkin index of the representation, the eigenvalues of the invariant Laplace operator, and the volume of the group.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper estimates of the Morse numbers for the matrix elements of real linear irreducible representations of compact connected simple Lie groups\",\"authors\":\"M. Meshcheryakov\",\"doi\":\"10.1090/spmj/1737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Morse numbers of spaces of matrix elements for real irreducible linear representations of compact connected simple Lie groups are estimate from above in a variety of ways, in terms of the dimension, the Dynkin index of the representation, the eigenvalues of the invariant Laplace operator, and the volume of the group.\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1737\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1737","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对紧连通单李群的实不可约线性表示的矩阵元素空间的莫尔斯数,从维数、表示的Dynkin指数、不变拉普拉斯算子的特征值和群的体积等方面,从上述出发,用各种方法进行了估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper estimates of the Morse numbers for the matrix elements of real linear irreducible representations of compact connected simple Lie groups
The Morse numbers of spaces of matrix elements for real irreducible linear representations of compact connected simple Lie groups are estimate from above in a variety of ways, in terms of the dimension, the Dynkin index of the representation, the eigenvalues of the invariant Laplace operator, and the volume of the group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信