{"title":"可加正则Г -半环及其推导的研究","authors":"M. Dadhwal, Neelam","doi":"10.7151/dmgaa.1378","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the notions of commutator and derivation in additively regular -semirings with (A2, Г)-condition are introduced. We also characterize Jordan product for additively regular Г -semiring and establish some results which investigate the relationship between commutators, derivations and inner derivations. In 1957, E.C. Posner has shown that if there exists a non-zero centralizing derivation in a prime ring R, then R is commutative. This result is extended in the frame work of derivations of prime additively regular Г -semirings.","PeriodicalId":36816,"journal":{"name":"Discussiones Mathematicae - General Algebra and Applications","volume":"42 1","pages":"201 - 215"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Additively Regular Г -Semirings and Derivations\",\"authors\":\"M. Dadhwal, Neelam\",\"doi\":\"10.7151/dmgaa.1378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, the notions of commutator and derivation in additively regular -semirings with (A2, Г)-condition are introduced. We also characterize Jordan product for additively regular Г -semiring and establish some results which investigate the relationship between commutators, derivations and inner derivations. In 1957, E.C. Posner has shown that if there exists a non-zero centralizing derivation in a prime ring R, then R is commutative. This result is extended in the frame work of derivations of prime additively regular Г -semirings.\",\"PeriodicalId\":36816,\"journal\":{\"name\":\"Discussiones Mathematicae - General Algebra and Applications\",\"volume\":\"42 1\",\"pages\":\"201 - 215\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae - General Algebra and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgaa.1378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae - General Algebra and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7151/dmgaa.1378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Study of Additively Regular Г -Semirings and Derivations
Abstract In this paper, the notions of commutator and derivation in additively regular -semirings with (A2, Г)-condition are introduced. We also characterize Jordan product for additively regular Г -semiring and establish some results which investigate the relationship between commutators, derivations and inner derivations. In 1957, E.C. Posner has shown that if there exists a non-zero centralizing derivation in a prime ring R, then R is commutative. This result is extended in the frame work of derivations of prime additively regular Г -semirings.