超布朗运动空间平均的高斯涨落

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Zenghu Li, Fei Pu
{"title":"超布朗运动空间平均的高斯涨落","authors":"Zenghu Li, Fei Pu","doi":"10.1080/07362994.2022.2079530","DOIUrl":null,"url":null,"abstract":"Abstract Let be the density of one-dimensional super-Brownian motion starting from Lebesgue measure. Using the Laplace functional of super-Brownian motion, we prove that as the normalized spatial integral converges jointly in (t, x) to Brownian sheet in distribution.","PeriodicalId":49474,"journal":{"name":"Stochastic Analysis and Applications","volume":"41 1","pages":"752 - 769"},"PeriodicalIF":0.8000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Gaussian fluctuation for spatial average of super-Brownian motion\",\"authors\":\"Zenghu Li, Fei Pu\",\"doi\":\"10.1080/07362994.2022.2079530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let be the density of one-dimensional super-Brownian motion starting from Lebesgue measure. Using the Laplace functional of super-Brownian motion, we prove that as the normalized spatial integral converges jointly in (t, x) to Brownian sheet in distribution.\",\"PeriodicalId\":49474,\"journal\":{\"name\":\"Stochastic Analysis and Applications\",\"volume\":\"41 1\",\"pages\":\"752 - 769\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07362994.2022.2079530\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07362994.2022.2079530","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

摘要:设从勒贝格测度出发的一维超布朗运动的密度。利用超布朗运动的拉普拉斯泛函,证明了当归一化空间积分在(t, x)上联合收敛于分布上的布朗表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian fluctuation for spatial average of super-Brownian motion
Abstract Let be the density of one-dimensional super-Brownian motion starting from Lebesgue measure. Using the Laplace functional of super-Brownian motion, we prove that as the normalized spatial integral converges jointly in (t, x) to Brownian sheet in distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Analysis and Applications
Stochastic Analysis and Applications 数学-统计学与概率论
CiteScore
2.70
自引率
7.70%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Stochastic Analysis and Applications presents the latest innovations in the field of stochastic theory and its practical applications, as well as the full range of related approaches to analyzing systems under random excitation. In addition, it is the only publication that offers the broad, detailed coverage necessary for the interfield and intrafield fertilization of new concepts and ideas, providing the scientific community with a unique and highly useful service.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信