{"title":"效果修正的选择性推理:一项实证研究","authors":"Qingyuan Zhao, Snigdha Panigrahi","doi":"10.1353/obs.2019.0007","DOIUrl":null,"url":null,"abstract":"Abstract:We demonstrate a selective inferential approach for discovering and making confident conclusions about treatment effect heterogeneity. Our method consists of two stages. First, we use Robinson’s transformation to eliminate confounding in the observational study. Next we select a simple model for effect modification using lasso-regularized regression and then use recently developed tools in selective inference to make valid statistical inference for the discovered effect modifiers. We analyze the Mindset Study data-set provided by the workshop organizers and compare our approach with other benchmark methods.","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":"5 1","pages":"131 - 140"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1353/obs.2019.0007","citationCount":"6","resultStr":"{\"title\":\"Selective Inference for Effect Modification: An Empirical Investigation\",\"authors\":\"Qingyuan Zhao, Snigdha Panigrahi\",\"doi\":\"10.1353/obs.2019.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:We demonstrate a selective inferential approach for discovering and making confident conclusions about treatment effect heterogeneity. Our method consists of two stages. First, we use Robinson’s transformation to eliminate confounding in the observational study. Next we select a simple model for effect modification using lasso-regularized regression and then use recently developed tools in selective inference to make valid statistical inference for the discovered effect modifiers. We analyze the Mindset Study data-set provided by the workshop organizers and compare our approach with other benchmark methods.\",\"PeriodicalId\":74335,\"journal\":{\"name\":\"Observational studies\",\"volume\":\"5 1\",\"pages\":\"131 - 140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1353/obs.2019.0007\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Observational studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/obs.2019.0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2019.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Selective Inference for Effect Modification: An Empirical Investigation
Abstract:We demonstrate a selective inferential approach for discovering and making confident conclusions about treatment effect heterogeneity. Our method consists of two stages. First, we use Robinson’s transformation to eliminate confounding in the observational study. Next we select a simple model for effect modification using lasso-regularized regression and then use recently developed tools in selective inference to make valid statistical inference for the discovered effect modifiers. We analyze the Mindset Study data-set provided by the workshop organizers and compare our approach with other benchmark methods.