Prediksi评级电影IMDb蒙古纳坎决策树

Rifqy Rosdiyah Ilmi, Fachrul Kurniawan, Sri Harini
{"title":"Prediksi评级电影IMDb蒙古纳坎决策树","authors":"Rifqy Rosdiyah Ilmi, Fachrul Kurniawan, Sri Harini","doi":"10.25126/jtiik.20241046615","DOIUrl":null,"url":null,"abstract":"Industri Film bukan hanya industri atau pusat hiburan semata melainkan menjadi pusat bisnis global. Popularitas atau kesuksesan film box office  selalu menjadi perhatian di seluruh dunia. Data kesuksesan atau popularitas film saat ini tersedia secara online. IMDb merupakan satu dari sekian situs daring penyedia informasi yang berkaitan dengan film, acara televisi, yang meliputi sinopsis, daftar pemain, ulasan penilaian, dan tentunya pemberian rating film. Keberhasilan film dapat ditandai dengan perolehan rating yang tinggi. Prediksi rating film menjadi topik menarik untuk menilai keberhasilan film baik yang telah diproduksi maupun yang belum diproduksi. Pada penelitian ini, dilakukan prediksi nilai rating film menggunakan metode decision tree. Hasil dari penelitian ini diperoleh kesimpulan bahwa atribut popularitas film dan nilai vote user pada laman IMDb berpengaruh terhadap nilai rating film. Nilai akurasi penggunaan model decision tree pada data training, validasi dan testing bertuturt – turut adalah 0,7529, 0,7237 dan 0,7079. AbstractThe film industry is not just an industry or entertainment but also a global business center. The popularity or success of box office movies has always been a concern around the world. Data on the success or popularity of a movie is currently available online. IMDb is one of the many online sites that provide information related to movies, television shows, which include synopsis, cast lists, rating reviews, and of course movie rating assignments. Prediction of movie ratings is an interesting topic to assess the success of films that have been produced and those that have not been produced. Prediction of movie ratings values can be modeled through machine learning using the decision tree model. From this research, it can be concluded that the popularity of the film and the value of user votes on the IMDb page have an effect on the film rating value. The accuracy values of using the descision tree model in training data, validation and testing are respectively 0.7529, 0.7237 and 0.7079.","PeriodicalId":32501,"journal":{"name":"Jurnal Teknologi Informasi dan Ilmu Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediksi Rating Film IMDb Menggunakan Decision Tree\",\"authors\":\"Rifqy Rosdiyah Ilmi, Fachrul Kurniawan, Sri Harini\",\"doi\":\"10.25126/jtiik.20241046615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industri Film bukan hanya industri atau pusat hiburan semata melainkan menjadi pusat bisnis global. Popularitas atau kesuksesan film box office  selalu menjadi perhatian di seluruh dunia. Data kesuksesan atau popularitas film saat ini tersedia secara online. IMDb merupakan satu dari sekian situs daring penyedia informasi yang berkaitan dengan film, acara televisi, yang meliputi sinopsis, daftar pemain, ulasan penilaian, dan tentunya pemberian rating film. Keberhasilan film dapat ditandai dengan perolehan rating yang tinggi. Prediksi rating film menjadi topik menarik untuk menilai keberhasilan film baik yang telah diproduksi maupun yang belum diproduksi. Pada penelitian ini, dilakukan prediksi nilai rating film menggunakan metode decision tree. Hasil dari penelitian ini diperoleh kesimpulan bahwa atribut popularitas film dan nilai vote user pada laman IMDb berpengaruh terhadap nilai rating film. Nilai akurasi penggunaan model decision tree pada data training, validasi dan testing bertuturt – turut adalah 0,7529, 0,7237 dan 0,7079. AbstractThe film industry is not just an industry or entertainment but also a global business center. The popularity or success of box office movies has always been a concern around the world. Data on the success or popularity of a movie is currently available online. IMDb is one of the many online sites that provide information related to movies, television shows, which include synopsis, cast lists, rating reviews, and of course movie rating assignments. Prediction of movie ratings is an interesting topic to assess the success of films that have been produced and those that have not been produced. Prediction of movie ratings values can be modeled through machine learning using the decision tree model. From this research, it can be concluded that the popularity of the film and the value of user votes on the IMDb page have an effect on the film rating value. The accuracy values of using the descision tree model in training data, validation and testing are respectively 0.7529, 0.7237 and 0.7079.\",\"PeriodicalId\":32501,\"journal\":{\"name\":\"Jurnal Teknologi Informasi dan Ilmu Komputer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi Informasi dan Ilmu Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25126/jtiik.20241046615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi dan Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25126/jtiik.20241046615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电影业不仅仅是一个工业或娱乐中心,而是一个全球商业中心。受欢迎程度或电影票房的成功一直是全世界关注的焦点。目前的电影成功率或受欢迎程度数据可在线获取。IMDb是电影、电视节目相关信息提供商的网站之一,包括简介、播放列表、评论,当然还有电影评级。这部电影的成功可以用高评价来标记。电影的评分预测成为评估已制作和未制作电影成功与否的一个有趣话题。在本研究中,使用决策树方法对电影的价值进行了预测。本研究的结果表明,电影的受欢迎程度属性和用户在IMDb页面上的投票值会影响电影的评分值。决策树模型在数据训练、验证和相关测试中的使用的准确值——其次是0.7529、0.7237和0.7079摘要电影业不仅是一个行业或娱乐业,也是一个全球商业中心。票房电影的受欢迎程度或成功程度一直是全世界关注的问题。关于一部电影的成功或受欢迎程度的数据目前可以在网上找到。IMDb是众多提供电影、电视节目相关信息的在线网站之一,其中包括简介、演员名单、评级评论,当然还有电影评级分配。预测电影收视率是一个有趣的话题,用来评估已经制作和尚未制作的电影的成功与否。电影评级值的预测可以通过使用决策树模型的机器学习来建模。从这项研究中可以得出结论,电影的受欢迎程度和IMDb页面上用户投票的价值对电影评分值有影响。在训练数据、验证和测试中使用desvision树模型的准确度值分别为0.7529、0.7237和0.7079。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediksi Rating Film IMDb Menggunakan Decision Tree
Industri Film bukan hanya industri atau pusat hiburan semata melainkan menjadi pusat bisnis global. Popularitas atau kesuksesan film box office  selalu menjadi perhatian di seluruh dunia. Data kesuksesan atau popularitas film saat ini tersedia secara online. IMDb merupakan satu dari sekian situs daring penyedia informasi yang berkaitan dengan film, acara televisi, yang meliputi sinopsis, daftar pemain, ulasan penilaian, dan tentunya pemberian rating film. Keberhasilan film dapat ditandai dengan perolehan rating yang tinggi. Prediksi rating film menjadi topik menarik untuk menilai keberhasilan film baik yang telah diproduksi maupun yang belum diproduksi. Pada penelitian ini, dilakukan prediksi nilai rating film menggunakan metode decision tree. Hasil dari penelitian ini diperoleh kesimpulan bahwa atribut popularitas film dan nilai vote user pada laman IMDb berpengaruh terhadap nilai rating film. Nilai akurasi penggunaan model decision tree pada data training, validasi dan testing bertuturt – turut adalah 0,7529, 0,7237 dan 0,7079. AbstractThe film industry is not just an industry or entertainment but also a global business center. The popularity or success of box office movies has always been a concern around the world. Data on the success or popularity of a movie is currently available online. IMDb is one of the many online sites that provide information related to movies, television shows, which include synopsis, cast lists, rating reviews, and of course movie rating assignments. Prediction of movie ratings is an interesting topic to assess the success of films that have been produced and those that have not been produced. Prediction of movie ratings values can be modeled through machine learning using the decision tree model. From this research, it can be concluded that the popularity of the film and the value of user votes on the IMDb page have an effect on the film rating value. The accuracy values of using the descision tree model in training data, validation and testing are respectively 0.7529, 0.7237 and 0.7079.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信