全局分形变换与全局寻址

IF 1.1 4区 数学 Q1 MATHEMATICS
A. Vince
{"title":"全局分形变换与全局寻址","authors":"A. Vince","doi":"10.4171/JFG/65","DOIUrl":null,"url":null,"abstract":"The attractor is a central object of an iterated function system (IFS), and fractal transformations are the natural maps from the attractor of one IFS to the attractor of another. This paper presents a global point of view, showing how to extend the domain of a fractal transformation from an attractor with non-empty interior to the ambient space. Intimitely related is the extension of addressing from such an attractor to the set of points of the ambient space. Properties of such global fractal transformations are obtained, and tilings are constructed based on global addresses.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2018-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JFG/65","citationCount":"2","resultStr":"{\"title\":\"Global fractal transformations and global addressing\",\"authors\":\"A. Vince\",\"doi\":\"10.4171/JFG/65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The attractor is a central object of an iterated function system (IFS), and fractal transformations are the natural maps from the attractor of one IFS to the attractor of another. This paper presents a global point of view, showing how to extend the domain of a fractal transformation from an attractor with non-empty interior to the ambient space. Intimitely related is the extension of addressing from such an attractor to the set of points of the ambient space. Properties of such global fractal transformations are obtained, and tilings are constructed based on global addresses.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/JFG/65\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JFG/65\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JFG/65","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

吸引子是迭代函数系统(IFS)的中心对象,分形变换是从一个IFS的吸引子到另一个IFS的吸引子的自然映射。本文给出了一个全局的观点,说明了如何将一个分形变换的定域从一个内部非空的吸引子扩展到周围空间。密切相关的是从这样一个吸引子的寻址扩展到周围空间的点集。得到了这类全局分形变换的性质,并基于全局地址构造了分块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global fractal transformations and global addressing
The attractor is a central object of an iterated function system (IFS), and fractal transformations are the natural maps from the attractor of one IFS to the attractor of another. This paper presents a global point of view, showing how to extend the domain of a fractal transformation from an attractor with non-empty interior to the ambient space. Intimitely related is the extension of addressing from such an attractor to the set of points of the ambient space. Properties of such global fractal transformations are obtained, and tilings are constructed based on global addresses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信