广义纳什对策的复制因子动力学

IF 0.4 Q4 MATHEMATICS, APPLIED
Jason Lequyer
{"title":"广义纳什对策的复制因子动力学","authors":"Jason Lequyer","doi":"10.5206/MASE/11137","DOIUrl":null,"url":null,"abstract":"Generalized Nash Games are a powerful modelling tool, first introduced in the 1950's. They have seen some important developments in the past two decades. Separately, Evolutionary Games were introduced in the 1960's and seek to describe how natural selection can drive phenotypic changes in interacting populations. In this paper, we show how the dynamics of these two independently formulated models can be linked under a common framework and how this framework can be used to expand Evolutionary Games. At the center of this unified model is the Replicator Equation and the relationship we establish between it and the lesser known Projected Dynamical System.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The replicator dynamics of generalized Nash games\",\"authors\":\"Jason Lequyer\",\"doi\":\"10.5206/MASE/11137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalized Nash Games are a powerful modelling tool, first introduced in the 1950's. They have seen some important developments in the past two decades. Separately, Evolutionary Games were introduced in the 1960's and seek to describe how natural selection can drive phenotypic changes in interacting populations. In this paper, we show how the dynamics of these two independently formulated models can be linked under a common framework and how this framework can be used to expand Evolutionary Games. At the center of this unified model is the Replicator Equation and the relationship we establish between it and the lesser known Projected Dynamical System.\",\"PeriodicalId\":93797,\"journal\":{\"name\":\"Mathematics in applied sciences and engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in applied sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/MASE/11137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/MASE/11137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

广义纳什博弈是一个强大的建模工具,在20世纪50年代首次引入。在过去的二十年里,他们看到了一些重要的发展。另外,进化游戏是在20世纪60年代引入的,旨在描述自然选择如何在相互作用的种群中驱动表型变化。在本文中,我们将展示这两个独立模型的动态如何在一个共同框架下联系起来,以及该框架如何用于扩展进化游戏。这个统一模型的中心是复制方程,以及我们在它和鲜为人知的投影动力系统之间建立的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The replicator dynamics of generalized Nash games
Generalized Nash Games are a powerful modelling tool, first introduced in the 1950's. They have seen some important developments in the past two decades. Separately, Evolutionary Games were introduced in the 1960's and seek to describe how natural selection can drive phenotypic changes in interacting populations. In this paper, we show how the dynamics of these two independently formulated models can be linked under a common framework and how this framework can be used to expand Evolutionary Games. At the center of this unified model is the Replicator Equation and the relationship we establish between it and the lesser known Projected Dynamical System.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信