非均匀介质作用下孔-孔静态相互作用的阻力电阻率

Q3 Materials Science
S. K. Upadhyay, L. K. Sainia
{"title":"非均匀介质作用下孔-孔静态相互作用的阻力电阻率","authors":"S. K. Upadhyay, L. K. Sainia","doi":"10.2174/2405461507666220628161237","DOIUrl":null,"url":null,"abstract":"\n\nWe have study the Coulomb drag phenomena for hole-hole static potentials theoretically and measured numerically using the random phase approximation (RPA) method\n\n\n\nThe drag resistivity is evaluated at low temperature, large interlayer separation limit and weakly screening regime, with the geometry of two atomically thin materials, such as, BLG/GaAs based multilayer system, is a promising systems in nanomaterials and technology\n\n\n\nStatic local field corrections (LFC) are considered to take into account the Exchange-correlations (XC) and mutual interaction effects with varying concentrations of active and passive layer\n\n\n\nIt is found that the drag resistivity is found enhanced on using the LFC effects and increases on increasing the effective mass. In Fermi-Liquid regime, drag resistivity is directly proportional to T^2, n^(-3), d^(-4) and ϵ^2 with respect to temperature (T), density (n), interlayer separation (d~nm) and dielectric constant (ϵ_2), respectively.\n\n\n\nDependency of drag resistivity is measured and compared to 2D e-e and e-h coupled-layer systems with and without the effect of non-homogeneous dielectric medium.\n","PeriodicalId":10924,"journal":{"name":"Current Nanomaterials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drag resistivity of hole-hole static interactions with the effect of non-homogeneous dielectric medium\",\"authors\":\"S. K. Upadhyay, L. K. Sainia\",\"doi\":\"10.2174/2405461507666220628161237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nWe have study the Coulomb drag phenomena for hole-hole static potentials theoretically and measured numerically using the random phase approximation (RPA) method\\n\\n\\n\\nThe drag resistivity is evaluated at low temperature, large interlayer separation limit and weakly screening regime, with the geometry of two atomically thin materials, such as, BLG/GaAs based multilayer system, is a promising systems in nanomaterials and technology\\n\\n\\n\\nStatic local field corrections (LFC) are considered to take into account the Exchange-correlations (XC) and mutual interaction effects with varying concentrations of active and passive layer\\n\\n\\n\\nIt is found that the drag resistivity is found enhanced on using the LFC effects and increases on increasing the effective mass. In Fermi-Liquid regime, drag resistivity is directly proportional to T^2, n^(-3), d^(-4) and ϵ^2 with respect to temperature (T), density (n), interlayer separation (d~nm) and dielectric constant (ϵ_2), respectively.\\n\\n\\n\\nDependency of drag resistivity is measured and compared to 2D e-e and e-h coupled-layer systems with and without the effect of non-homogeneous dielectric medium.\\n\",\"PeriodicalId\":10924,\"journal\":{\"name\":\"Current Nanomaterials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2405461507666220628161237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2405461507666220628161237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

我们从理论上研究了空穴静态势的库仑阻力现象,并使用随机相位近似(RPA)方法进行了数值测量。在两种原子薄材料(如BLG/GaAs基多层系统)的几何形状下,在低温、大的层间分离极限和弱屏蔽区下评估了阻力电阻率,在纳米材料和技术中是一个很有前途的系统。静态局部场校正(LFC)被认为考虑了交换相关性(XC)和与不同浓度的有源层和无源层的相互作用效应。研究发现,使用LFC效应会增强阻力电阻率,并随着有效质量的增加而增加,阻力电阻率与T^2、n^(-3)、d^(-4)和ε^2分别与温度(T)、密度(n)、层间分离(d~nm)和介电常数(ε_2)成正比。测量了阻力电阻率的相关性,并将其与有和无非均匀介质影响的二维e-e和e-h耦合层系统进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Drag resistivity of hole-hole static interactions with the effect of non-homogeneous dielectric medium
We have study the Coulomb drag phenomena for hole-hole static potentials theoretically and measured numerically using the random phase approximation (RPA) method The drag resistivity is evaluated at low temperature, large interlayer separation limit and weakly screening regime, with the geometry of two atomically thin materials, such as, BLG/GaAs based multilayer system, is a promising systems in nanomaterials and technology Static local field corrections (LFC) are considered to take into account the Exchange-correlations (XC) and mutual interaction effects with varying concentrations of active and passive layer It is found that the drag resistivity is found enhanced on using the LFC effects and increases on increasing the effective mass. In Fermi-Liquid regime, drag resistivity is directly proportional to T^2, n^(-3), d^(-4) and ϵ^2 with respect to temperature (T), density (n), interlayer separation (d~nm) and dielectric constant (ϵ_2), respectively. Dependency of drag resistivity is measured and compared to 2D e-e and e-h coupled-layer systems with and without the effect of non-homogeneous dielectric medium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Nanomaterials
Current Nanomaterials Materials Science-Materials Science (miscellaneous)
CiteScore
1.60
自引率
0.00%
发文量
53
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信