工业延迟过程中各种Smith预估器配置的比较研究

IF 1 Q4 ENGINEERING, CHEMICAL
Vijaya Lakshmi Korupu, Manimozhi Muthukumarasamy
{"title":"工业延迟过程中各种Smith预估器配置的比较研究","authors":"Vijaya Lakshmi Korupu, Manimozhi Muthukumarasamy","doi":"10.1515/cppm-2021-0026","DOIUrl":null,"url":null,"abstract":"Abstract Efficient control of industrial delay processes is a challenging problem in the field of process control. Time delays are generally experienced in industrial processes from distance velocity lags, composition analysis loops, recycle time, mass, and energy transportation time. A high time delay adds a large phase lag to the system, thereby affecting the closed-loop control system stability and thus not easily controlled with PID approach. Smith predictor (SP) is a prominent technique based on process model for processes with high time delay. Unfortunately, the performance of SP deteriorates when the plant model is inaccurate. To overcome the problems related to conventional SP, various modifications have been suggested over the years in terms of structure alterations and controller parameters tuning improvements. This paper focuses on a comparative study of various Smith predictor configurations available in the literature for controlling inverse, integrating, stable and unstable industrial processes with time delay.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"17 1","pages":"701 - 732"},"PeriodicalIF":1.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cppm-2021-0026","citationCount":"7","resultStr":"{\"title\":\"A comparative study of various Smith predictor configurations for industrial delay processes\",\"authors\":\"Vijaya Lakshmi Korupu, Manimozhi Muthukumarasamy\",\"doi\":\"10.1515/cppm-2021-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Efficient control of industrial delay processes is a challenging problem in the field of process control. Time delays are generally experienced in industrial processes from distance velocity lags, composition analysis loops, recycle time, mass, and energy transportation time. A high time delay adds a large phase lag to the system, thereby affecting the closed-loop control system stability and thus not easily controlled with PID approach. Smith predictor (SP) is a prominent technique based on process model for processes with high time delay. Unfortunately, the performance of SP deteriorates when the plant model is inaccurate. To overcome the problems related to conventional SP, various modifications have been suggested over the years in terms of structure alterations and controller parameters tuning improvements. This paper focuses on a comparative study of various Smith predictor configurations available in the literature for controlling inverse, integrating, stable and unstable industrial processes with time delay.\",\"PeriodicalId\":9935,\"journal\":{\"name\":\"Chemical Product and Process Modeling\",\"volume\":\"17 1\",\"pages\":\"701 - 732\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/cppm-2021-0026\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Product and Process Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cppm-2021-0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2021-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 7

摘要

工业延迟过程的有效控制是过程控制领域的一个具有挑战性的问题。在工业过程中,时间延迟通常来自距离、速度滞后、成分分析循环、循环时间、质量和能量传输时间。大的时滞给系统增加了较大的相位滞后,从而影响闭环控制系统的稳定性,不易用PID方法控制。Smith预测器(SP)是一种基于过程模型的高时滞过程预测技术。不幸的是,当植物模型不准确时,SP的性能会下降。为了克服与传统SP相关的问题,多年来在结构改变和控制器参数调整方面提出了各种修改建议。本文重点比较研究了文献中用于控制时滞逆、积分、稳定和不稳定工业过程的各种Smith预测器配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of various Smith predictor configurations for industrial delay processes
Abstract Efficient control of industrial delay processes is a challenging problem in the field of process control. Time delays are generally experienced in industrial processes from distance velocity lags, composition analysis loops, recycle time, mass, and energy transportation time. A high time delay adds a large phase lag to the system, thereby affecting the closed-loop control system stability and thus not easily controlled with PID approach. Smith predictor (SP) is a prominent technique based on process model for processes with high time delay. Unfortunately, the performance of SP deteriorates when the plant model is inaccurate. To overcome the problems related to conventional SP, various modifications have been suggested over the years in terms of structure alterations and controller parameters tuning improvements. This paper focuses on a comparative study of various Smith predictor configurations available in the literature for controlling inverse, integrating, stable and unstable industrial processes with time delay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Product and Process Modeling
Chemical Product and Process Modeling ENGINEERING, CHEMICAL-
CiteScore
2.10
自引率
11.10%
发文量
27
期刊介绍: Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信