求解Benjamin-Bona-Mahony方程的Besse扩展三次B样条配置方法

IF 0.3 Q4 MATHEMATICS
Nur Nadiah Mohd Rahan, Nur Nadiah Abd Hamid
{"title":"求解Benjamin-Bona-Mahony方程的Besse扩展三次B样条配置方法","authors":"Nur Nadiah Mohd Rahan, Nur Nadiah Abd Hamid","doi":"10.11113/matematika.v39.n1.1448","DOIUrl":null,"url":null,"abstract":"Extended cubic B-spline collocation method is formulated to solve the Benjamin-Bona-Mahony equation without linearization. The Besse relaxation scheme is applied on the nonlinear terms and therefore transforms the equation into a systemof two linear equations. The time derivative is discretized using Forward Difference Approximation whereas the spatial dimension is approximated using extended cubic B-spline function. Applying the von-Neumann stability analysis, the proposed technique are shown unconditionally stable. Two numerical examples are presented and the results are compared with the exact solutions and recent methods.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Besse Extended Cubic B-spline Collocation Method for Solving Benjamin-Bona-Mahony Equation\",\"authors\":\"Nur Nadiah Mohd Rahan, Nur Nadiah Abd Hamid\",\"doi\":\"10.11113/matematika.v39.n1.1448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extended cubic B-spline collocation method is formulated to solve the Benjamin-Bona-Mahony equation without linearization. The Besse relaxation scheme is applied on the nonlinear terms and therefore transforms the equation into a systemof two linear equations. The time derivative is discretized using Forward Difference Approximation whereas the spatial dimension is approximated using extended cubic B-spline function. Applying the von-Neumann stability analysis, the proposed technique are shown unconditionally stable. Two numerical examples are presented and the results are compared with the exact solutions and recent methods.\",\"PeriodicalId\":43733,\"journal\":{\"name\":\"Matematika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/matematika.v39.n1.1448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/matematika.v39.n1.1448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

为了求解Benjamin-Bona-Mahony方程,提出了一种不进行线性化的扩展三次B样条配置方法。贝塞尔松弛格式应用于非线性项,因此将方程转换为两个线性方程组。时间导数使用前向差分近似进行离散,而空间维度使用扩展的三次B样条函数进行近似。应用von Neumann稳定性分析,证明了所提出的技术是无条件稳定的。给出了两个数值例子,并将结果与精确解和最近的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Besse Extended Cubic B-spline Collocation Method for Solving Benjamin-Bona-Mahony Equation
Extended cubic B-spline collocation method is formulated to solve the Benjamin-Bona-Mahony equation without linearization. The Besse relaxation scheme is applied on the nonlinear terms and therefore transforms the equation into a systemof two linear equations. The time derivative is discretized using Forward Difference Approximation whereas the spatial dimension is approximated using extended cubic B-spline function. Applying the von-Neumann stability analysis, the proposed technique are shown unconditionally stable. Two numerical examples are presented and the results are compared with the exact solutions and recent methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信