小时间增量Navier-Stokes问题的Lagrange‐Galerkin解的性质

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
M. Tabata, Shinya Uchiumi
{"title":"小时间增量Navier-Stokes问题的Lagrange‐Galerkin解的性质","authors":"M. Tabata, Shinya Uchiumi","doi":"10.1002/num.23051","DOIUrl":null,"url":null,"abstract":"We consider two kinds of numerical quadrature formulas of Gauss type and Newton‐Cotes type, which are required in the real computation of Lagrange–Galerkin scheme for the Navier–Stokes problem. The Lagrange–Galerkin scheme with numerical quadrature, which has been used practically but not fully analyzed, is proved to be convergent at least for Gauss type quadrature under a condition on the time increment. As for the scheme with Newton‐Cotes type quadrature, it has more smooth convergent property than that of Gauss type, whose reason is discussed.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"39 1","pages":"4295 - 4316"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior of Lagrange‐Galerkin solutions to the Navier‐Stokes problem for small time increment\",\"authors\":\"M. Tabata, Shinya Uchiumi\",\"doi\":\"10.1002/num.23051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider two kinds of numerical quadrature formulas of Gauss type and Newton‐Cotes type, which are required in the real computation of Lagrange–Galerkin scheme for the Navier–Stokes problem. The Lagrange–Galerkin scheme with numerical quadrature, which has been used practically but not fully analyzed, is proved to be convergent at least for Gauss type quadrature under a condition on the time increment. As for the scheme with Newton‐Cotes type quadrature, it has more smooth convergent property than that of Gauss type, whose reason is discussed.\",\"PeriodicalId\":19443,\"journal\":{\"name\":\"Numerical Methods for Partial Differential Equations\",\"volume\":\"39 1\",\"pages\":\"4295 - 4316\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Methods for Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23051\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23051","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了Navier-Stokes问题的Lagrange-Galerkin格式的实际计算中所需要的Gauss型和Newton‐Cotes型两种数值正交公式。具有数值正交的拉格朗日-伽辽金格式在一定的时间增量条件下,至少对高斯型正交是收敛的。对于具有Newton - Cotes型正交的格式,它具有比高斯型格式更光滑的收敛性,并讨论了其原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavior of Lagrange‐Galerkin solutions to the Navier‐Stokes problem for small time increment
We consider two kinds of numerical quadrature formulas of Gauss type and Newton‐Cotes type, which are required in the real computation of Lagrange–Galerkin scheme for the Navier–Stokes problem. The Lagrange–Galerkin scheme with numerical quadrature, which has been used practically but not fully analyzed, is proved to be convergent at least for Gauss type quadrature under a condition on the time increment. As for the scheme with Newton‐Cotes type quadrature, it has more smooth convergent property than that of Gauss type, whose reason is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
2.60%
发文量
81
审稿时长
9 months
期刊介绍: An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信