{"title":"打入桩低动载引起的振动:数值预测和实验验证","authors":"A. Colaço, P. Costa, C. Parente, A. M. Abouelmaty","doi":"10.3390/vibration5040049","DOIUrl":null,"url":null,"abstract":"The present paper addresses the problem of generating and propagating vibrations induced by low-impact loading on a driven pile. In this context, an experimental test site was selected and characterized, where ground-borne vibrations induced by the application of a low dynamic loading on the pile head were measured using accelerometers placed at the ground surface. At the same time, a new numerical approach, based on a coupled FEM-PML (Finite Element Method-Perfectly Matched Layer) formulation, to model the pile–ground system was presented. A very satisfactory agreement was observed between the experimental data collected in these experiments and the prediction performed by the numerical model. The experimental data can be also used by other authors for the experimental validation of their or other prediction models.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Vibrations Induced by a Low Dynamic Loading on a Driven Pile: Numerical Prediction and Experimental Validation\",\"authors\":\"A. Colaço, P. Costa, C. Parente, A. M. Abouelmaty\",\"doi\":\"10.3390/vibration5040049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper addresses the problem of generating and propagating vibrations induced by low-impact loading on a driven pile. In this context, an experimental test site was selected and characterized, where ground-borne vibrations induced by the application of a low dynamic loading on the pile head were measured using accelerometers placed at the ground surface. At the same time, a new numerical approach, based on a coupled FEM-PML (Finite Element Method-Perfectly Matched Layer) formulation, to model the pile–ground system was presented. A very satisfactory agreement was observed between the experimental data collected in these experiments and the prediction performed by the numerical model. The experimental data can be also used by other authors for the experimental validation of their or other prediction models.\",\"PeriodicalId\":75301,\"journal\":{\"name\":\"Vibration\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vibration5040049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration5040049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 3
摘要
本文研究了低冲击荷载作用下沉桩振动的产生和传播问题。在这种情况下,选择了一个实验测试地点并对其进行了表征,在那里,使用放置在地面上的加速度计测量了由桩头施加低动载荷引起的地面振动。同时,提出了一种基于FEM-PML (Finite Element method - pml - perfect Matched Layer)耦合公式的桩-地基系统建模新方法。这些实验所收集的实验数据与数值模型的预测结果吻合得很好。实验数据也可以被其他作者用于他们或其他预测模型的实验验证。
Vibrations Induced by a Low Dynamic Loading on a Driven Pile: Numerical Prediction and Experimental Validation
The present paper addresses the problem of generating and propagating vibrations induced by low-impact loading on a driven pile. In this context, an experimental test site was selected and characterized, where ground-borne vibrations induced by the application of a low dynamic loading on the pile head were measured using accelerometers placed at the ground surface. At the same time, a new numerical approach, based on a coupled FEM-PML (Finite Element Method-Perfectly Matched Layer) formulation, to model the pile–ground system was presented. A very satisfactory agreement was observed between the experimental data collected in these experiments and the prediction performed by the numerical model. The experimental data can be also used by other authors for the experimental validation of their or other prediction models.