科学知识图谱和研究影响评估的新趋势

IF 4.1 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE
P. Manghi, A. Mannocci, Francesco Osborne, Dimitris Sacharidis, Angelo Salatino, Thanasis Vergoulis
{"title":"科学知识图谱和研究影响评估的新趋势","authors":"P. Manghi, A. Mannocci, Francesco Osborne, Dimitris Sacharidis, Angelo Salatino, Thanasis Vergoulis","doi":"10.1162/qss_e_00160","DOIUrl":null,"url":null,"abstract":"In recent decades, we have experienced a continuously increasing publication rate of scientific articles and related research objects (e.g., data sets, software packages). As this trend keeps growing, practitioners in the field of scholarly knowledge are confronted with several challenges. In this special issue, we focus on two major categories of such challenges: (a) those related to the organization of scholarly data to achieve a flexible, context-sensitive, finegrained, and machine-actionable representation of scholarly knowledge that at the same time is structured, interlinked, and semantically rich, and (b) those related to the design of novel, reliable, and comprehensive metrics to assess scientific impact.","PeriodicalId":34021,"journal":{"name":"Quantitative Science Studies","volume":"2 1","pages":"1296-1300"},"PeriodicalIF":4.1000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"New trends in scientific knowledge graphs and research impact assessment\",\"authors\":\"P. Manghi, A. Mannocci, Francesco Osborne, Dimitris Sacharidis, Angelo Salatino, Thanasis Vergoulis\",\"doi\":\"10.1162/qss_e_00160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent decades, we have experienced a continuously increasing publication rate of scientific articles and related research objects (e.g., data sets, software packages). As this trend keeps growing, practitioners in the field of scholarly knowledge are confronted with several challenges. In this special issue, we focus on two major categories of such challenges: (a) those related to the organization of scholarly data to achieve a flexible, context-sensitive, finegrained, and machine-actionable representation of scholarly knowledge that at the same time is structured, interlinked, and semantically rich, and (b) those related to the design of novel, reliable, and comprehensive metrics to assess scientific impact.\",\"PeriodicalId\":34021,\"journal\":{\"name\":\"Quantitative Science Studies\",\"volume\":\"2 1\",\"pages\":\"1296-1300\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2021-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Science Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/qss_e_00160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Science Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/qss_e_00160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 10

摘要

近几十年来,我们经历了科学文章和相关研究对象(如数据集、软件包)的发表率不断增加。随着这一趋势的不断发展,学术知识领域的从业者面临着一些挑战。在本期特刊中,我们重点关注这类挑战的两大类:(a)与学术数据组织相关的挑战,以实现灵活、上下文敏感、细粒度和机器可操作的学术知识表示,同时是结构化的、相互关联的和语义丰富的;(b)与设计新颖、可靠和全面的指标来评估科学影响相关的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New trends in scientific knowledge graphs and research impact assessment
In recent decades, we have experienced a continuously increasing publication rate of scientific articles and related research objects (e.g., data sets, software packages). As this trend keeps growing, practitioners in the field of scholarly knowledge are confronted with several challenges. In this special issue, we focus on two major categories of such challenges: (a) those related to the organization of scholarly data to achieve a flexible, context-sensitive, finegrained, and machine-actionable representation of scholarly knowledge that at the same time is structured, interlinked, and semantically rich, and (b) those related to the design of novel, reliable, and comprehensive metrics to assess scientific impact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantitative Science Studies
Quantitative Science Studies INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
12.10
自引率
12.50%
发文量
46
审稿时长
22 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信