{"title":"超临界非局部Kirchhoff问题的存在性和多重性结果","authors":"G. Anello","doi":"10.58997/ejde.2023.14","DOIUrl":null,"url":null,"abstract":"We study the existence and multiplicity of solutions for the nonlocalperturbed Kirchhoff problem$$\\displaylines{-\\Big(a+b\\int_\\Omega |\\nabla u|^2\\,dx\\Big)\\Delta u=\\lambda g(x,u)+f(x,u), \\quad \\text{in } \\Omega,\\\\ u=0, \\quad\\text{on }\\partial\\Omega,}$$ where Ω is a bounded smooth domain in \\(\\mathbb{R}^N\\), \\(N>4\\), \\(a,b, \\lambda > 0\\), and \\(f,g:\\Omega\\times \\mathbb{R}\\to \\mathbb{R}\\) are Caratheodory functions, with \\(f\\) subcritical, and \\(g\\) of arbitrary growth. This paper is motivated by a recent results by Faraci and Silva [4] where existence and multiplicity results were obtained when g is subcritical and f is a power-type function withcritical exponent.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and multiplicity results for supercritical nonlocal Kirchhoff problem\",\"authors\":\"G. Anello\",\"doi\":\"10.58997/ejde.2023.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the existence and multiplicity of solutions for the nonlocalperturbed Kirchhoff problem$$\\\\displaylines{-\\\\Big(a+b\\\\int_\\\\Omega |\\\\nabla u|^2\\\\,dx\\\\Big)\\\\Delta u=\\\\lambda g(x,u)+f(x,u), \\\\quad \\\\text{in } \\\\Omega,\\\\\\\\ u=0, \\\\quad\\\\text{on }\\\\partial\\\\Omega,}$$ where Ω is a bounded smooth domain in \\\\(\\\\mathbb{R}^N\\\\), \\\\(N>4\\\\), \\\\(a,b, \\\\lambda > 0\\\\), and \\\\(f,g:\\\\Omega\\\\times \\\\mathbb{R}\\\\to \\\\mathbb{R}\\\\) are Caratheodory functions, with \\\\(f\\\\) subcritical, and \\\\(g\\\\) of arbitrary growth. This paper is motivated by a recent results by Faraci and Silva [4] where existence and multiplicity results were obtained when g is subcritical and f is a power-type function withcritical exponent.\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.14\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.14","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了非局部扰动Kirchhoff问题$$\displaylines{-\Big(a+b\int_\Omega|\nabla u|^2\,dx\Big)\Delta u=\lambda g(x,u)+f(x,u),\quad\text{in}\Omega,\\u=0,\quad \text{on}\partial \Omega,和\(f,g:\Omega\times\mathbb{R}\ to \mathbb{R}\)是Caratheodory函数,具有\(f)次临界和\(g)任意增长。本文的动机是Faraci和Silva[4]最近的一个结果,其中当g是亚临界的,f是具有临界指数的幂型函数时,得到了存在性和多重性的结果。
Existence and multiplicity results for supercritical nonlocal Kirchhoff problem
We study the existence and multiplicity of solutions for the nonlocalperturbed Kirchhoff problem$$\displaylines{-\Big(a+b\int_\Omega |\nabla u|^2\,dx\Big)\Delta u=\lambda g(x,u)+f(x,u), \quad \text{in } \Omega,\\ u=0, \quad\text{on }\partial\Omega,}$$ where Ω is a bounded smooth domain in \(\mathbb{R}^N\), \(N>4\), \(a,b, \lambda > 0\), and \(f,g:\Omega\times \mathbb{R}\to \mathbb{R}\) are Caratheodory functions, with \(f\) subcritical, and \(g\) of arbitrary growth. This paper is motivated by a recent results by Faraci and Silva [4] where existence and multiplicity results were obtained when g is subcritical and f is a power-type function withcritical exponent.
期刊介绍:
All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.