论伯克霍夫意义上的实在普遍性

IF 0.1 Q4 MATHEMATICS
David Rodríguez
{"title":"论伯克霍夫意义上的实在普遍性","authors":"David Rodríguez","doi":"10.14321/REALANALEXCH.46.2.0485","DOIUrl":null,"url":null,"abstract":"In this paper we present a proof of the following statement: there is a C∞ function f on ℝn such that any other C∞ function on ℝn is the uniform limit, on the compact subsets of ℝn, of translations of f by natural numbers. This is a real version of the well-known Birkhoff’s result on the existence of a function with a similar property in the space of entire functions. Afterwards, we show that the technique used in our proof allows us to create 2ℵ0 linearly independent real C∞ universal functions. We also demonstrate that we may even obtain real analytic universal functions (in the sense of translations) by using Whitney’s Approximation Theorem.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON REAL UNIVERSALITY IN THE BIRKHOFF SENSE\",\"authors\":\"David Rodríguez\",\"doi\":\"10.14321/REALANALEXCH.46.2.0485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a proof of the following statement: there is a C∞ function f on ℝn such that any other C∞ function on ℝn is the uniform limit, on the compact subsets of ℝn, of translations of f by natural numbers. This is a real version of the well-known Birkhoff’s result on the existence of a function with a similar property in the space of entire functions. Afterwards, we show that the technique used in our proof allows us to create 2ℵ0 linearly independent real C∞ universal functions. We also demonstrate that we may even obtain real analytic universal functions (in the sense of translations) by using Whitney’s Approximation Theorem.\",\"PeriodicalId\":44674,\"journal\":{\"name\":\"Real Analysis Exchange\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real Analysis Exchange\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14321/REALANALEXCH.46.2.0485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/REALANALEXCH.46.2.0485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了以下命题的证明:存在一个C∞函数f,使得任何其他C∞函数f在f的紧子集上被自然数平移的一致极限。这是著名的Birkhoff关于在整个函数空间中具有类似性质的函数存在性的结果的一个真实版本。之后,我们证明了在我们的证明中使用的技术允许我们创建2 λ 0线性无关的实C∞泛函数。我们还证明了我们甚至可以用惠特尼近似定理得到真正的解析泛函数(在平移意义上)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON REAL UNIVERSALITY IN THE BIRKHOFF SENSE
In this paper we present a proof of the following statement: there is a C∞ function f on ℝn such that any other C∞ function on ℝn is the uniform limit, on the compact subsets of ℝn, of translations of f by natural numbers. This is a real version of the well-known Birkhoff’s result on the existence of a function with a similar property in the space of entire functions. Afterwards, we show that the technique used in our proof allows us to create 2ℵ0 linearly independent real C∞ universal functions. We also demonstrate that we may even obtain real analytic universal functions (in the sense of translations) by using Whitney’s Approximation Theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信